Acta Mechanica Sinica

, Volume 31, Issue 2, pp 248–258 | Cite as

Mechanokinetics of receptor–ligand interactions in cell adhesion

  • Ning Li
  • Shouqin Lü
  • Yan Zhang
  • Mian LongEmail author
Review Paper


Receptor–ligand interactions in blood flow are crucial to initiate such biological processes as inflammatory cascade, platelet thrombosis, as well as tumor metastasis. To mediate cell adhesion, the interacting receptors and ligands must be anchored onto two apposing surfaces of two cells or a cell and a substratum, i.e., two-dimensional (2D) binding, which is different from the binding of a soluble ligand in fluid phase to a receptor, i.e., three-dimensional (3D) binding. While numerous works have been focused on 3D kinetics of receptor–ligand interactions in the immune system, 2D kinetics and its regulations have been less understood, since no theoretical framework or experimental assays were established until 1993. Not only does the molecular structure dominate 2D binding kinetics, but the shear force in blood flow also regulates cell adhesion mediated by interacting receptors and ligands. Here, we provide an overview of current progress in 2D binding and regulations, mainly from our group. Relevant issues of theoretical frameworks, experimental measurements, kinetic rates and binding affinities, and force regulations are discussed.

Graphical Abstract

A neutrophil undergoes capture and rolling (or tethering) on the endothelium through selectin–PSGL-1 bonds, followed by slow rolling and firm adhesion through the \({\upbeta }_{2}\)-integrins LFA-1 and Mac-1 as well as intraluminal crawling and transmigration through the endothelium to the inflamed tissue.


Receptor–ligand interactions Selectins \({\upbeta }_{2}\) integrins 2D binding kinetics 



This work was supported by Natural Science Foundation of China (grants 10042001, 10072071, 10128205, 30225027, 10332060, 30730032, 11072251, and 31110103918), National Key Basic Research Foundation of China (grants 2006CB910303 and 2011CB710904), National High Technology Research and Development Program of China (grants 2007AA02Z306 and 2011AA020109), Chinese Academy of Sciences (grants KJCX2-L02, KJCX2-SW-L06, 2005-1-16, KJCX2-YW-L08, Y2010030, XDA01030102, XDA04073801), as well as NIH Fogarty International Research Collaboration Award TW 05774-01. Simulations were conducted on the DeepComp 7000 supercomputer at the Computer Network Information Center, Chinese Academy of Sciences.


  1. 1.
    Zimmerman, G.A., McIntyre, T.M., Prescott, S.M.: Adhesion and signaling in vascular cell–cell interactions. J. Clin. Invest. 98, 1699–1702 (1996)CrossRefGoogle Scholar
  2. 2.
    Ginsberg, M.H., Ruggeri, Z.M., Varki, A.P.: Cell adhesion in vascular biology: series introduction. J. Clin. Invest. 98, 1505–1505 (1996)CrossRefGoogle Scholar
  3. 3.
    Schmid-Schonbein, G.W.: Analysis of inflammation. Annu. Rev. Biomed. Eng. 8, 93–151 (2006)CrossRefGoogle Scholar
  4. 4.
    McEver, R.P., Cummings, R.D.: Role of PSGL-1 binding to selectins in leukocyte recruitment. J. Clin. Invest. 100, 485–492 (1997)CrossRefGoogle Scholar
  5. 5.
    Ley, K.: The role of selectins in inflammation and disease. Trends Mol. Med. 9, 263–268 (2003)CrossRefGoogle Scholar
  6. 6.
    McEver, R.P.: Selectins. Curr. Opin. Immunol. 6, 75–84 (1994)CrossRefGoogle Scholar
  7. 7.
    Li, P., Selvaraj, P., Zhu, C.: Analysis of competition binding between soluble and membrane-bound ligands for cell surface receptors. Biophys. J. 77, 3394–3406 (1999)CrossRefGoogle Scholar
  8. 8.
    Chang, K.C., Tees, D.F.J., Hammer, D.A.: The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc. Natl. Acad. Sci. USA. 97, 11262–11267 (2000)CrossRefGoogle Scholar
  9. 9.
    Snapp, K.R., Craig, R., Herron, M., et al.: Dimerization of P-selectin glycoprotein ligand-1 (PSGL-1) required for optimal recognition of P-selectin. J. Cell Biol. 142, 263–270 (1998)CrossRefGoogle Scholar
  10. 10.
    Li, F.G., Erickson, H.P., James, J.A., et al.: Visualization of P-selectin glycoprotein ligand-1 as a highly extended molecule and mapping of protein epitopes for monoclonal antibodies. J. Biol. Chem. 271, 6342–6348 (1996)CrossRefGoogle Scholar
  11. 11.
    Hemmerich, S., Leffler, H., Rosen, S.D.: Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J. Biol. Chem. 270, 12035–12047 (1995)CrossRefGoogle Scholar
  12. 12.
    Ley, K., Laudanna, C., Cybulsky, M.I., et al.: Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007)CrossRefGoogle Scholar
  13. 13.
    Bolomini-Vittori, M., Laudanna, C.: Integrin activation in the immune system. WIREs Syst. Biol. Med. 1, 116–127 (2009)CrossRefGoogle Scholar
  14. 14.
    Shimaoka, M., Takagi, J., Springer, T.A.: Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31, 485–516 (2002)CrossRefGoogle Scholar
  15. 15.
    Arnaout, M.A., Mahalingam, B., Xiong, J.P.: Integrin structure, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 21, 381–410 (2005)CrossRefGoogle Scholar
  16. 16.
    Luo, B.H., Springer, T.A.: Integrin structures and conformational signaling. Curr. Opin. Cell Biol. 18, 579–586 (2006)CrossRefGoogle Scholar
  17. 17.
    Zarbock, A., Kuwano, Y., Spelten, O., et al.: Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils. Blood. 116, 617–624 (2014)Google Scholar
  18. 18.
    Kinashi, T.: Intracellular signalling controlling integrin activation in lymphocytes. Nat. Rev. Immunol. 5, 546–559 (2005)CrossRefGoogle Scholar
  19. 19.
    Yago, T., Shao, B.J., Miner, J.J., et al.: E-selectin engages PSGL-1 and CD44 through a common signaling pathway to induce integrin alpha(L)beta(2)-mediated slow leukocyte rolling. Blood 116, 485–494 (2010)CrossRefGoogle Scholar
  20. 20.
    Ginsberg, M.H., Shattil, S.J., Kim, C.: The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288–300 (2010)CrossRefGoogle Scholar
  21. 21.
    Diamond, M.S., Staunton, D.E., Marlin, S.D., et al.: Binding of the integrin Mac-1 (CD11b/CD18) to the 3rd immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65, 961–971 (1991)CrossRefGoogle Scholar
  22. 22.
    Staunton, D.E., Dustin, M.L., Erickson, H.P., et al.: The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding-sites for LFA-1 and rhinovirus. Cell 61, 243–254 (1990)CrossRefGoogle Scholar
  23. 23.
    Nagarajan, S., Chesla, S., Cobern, L., et al.: Ligand-binding and phagocytosis by CD16 (Fc-gamma receptor-III) isoforms—phagocytic signaling by associated zeta-subunits and gamma-subunits in chinese-hamster ovary cells. J. Biol. Chem. 270, 25762–25770 (1995)CrossRefGoogle Scholar
  24. 24.
    Nagarajan, S., Venkiteswaran, K., Anderson, M., et al.: Cell-specific, activation-dependent regulation of neutrophil CD32A ligand-binding function. Blood 95, 1069–1077 (2000)Google Scholar
  25. 25.
    Chesla, S.E., Selvaraj, P., Zhu, C.: Measuring two-dimensional receptor–ligand binding kinetics by micropipette. Biophys. J. 75, 1553–1572 (1998)CrossRefGoogle Scholar
  26. 26.
    Dembo, M., Torney, D.C., Saxman, K., et al.: The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B 234, 55–83 (1988)CrossRefGoogle Scholar
  27. 27.
    Bell, G.I.: Models for specific adhesion of cells to cells. Science 200, 618–627 (1978)CrossRefGoogle Scholar
  28. 28.
    Tees, D.F.J., Waugh, R.E., Hammer, D.A.: A microcantilever device to assess the effect of force on the lifetime of selectin-carbohydrate bonds. Biophys. J. 80, 668–682 (2001)CrossRefGoogle Scholar
  29. 29.
    Yuan, C.B., Chen, A., Kolb, P., et al.: Energy landscape of streptavidin–biotin complexes measured by atomic force microscopy. Biochemistry 39, 10219–10223 (2000)CrossRefGoogle Scholar
  30. 30.
    Huang, J., Edwards, L.J., Evavold, B.D., et al.: Kinetics of MHC-CD8 interaction at the T cell membrane. J. Immunol. 179, 7653–7662 (2007)CrossRefGoogle Scholar
  31. 31.
    Huang, J., Chen, J., Chesla, S.E., et al.: Quantifying the effects of molecular orientation and length on two-dimensional receptor–ligand binding kinetics. J. Biol. Chem. 279, 44915–44923 (2004)CrossRefGoogle Scholar
  32. 32.
    McQuarrie, D.A.: Kinetics of small systems.1. J. Chem. Phys. 38, 433–436 (1963)CrossRefGoogle Scholar
  33. 33.
    Zhu, C., Bao, G., Wang, N.: Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2, 189–226 (2000)CrossRefGoogle Scholar
  34. 34.
    Zhu, C.: Kinetics and mechanics of cell adhesion. J. Biomech. 33, 23–33 (2000)CrossRefGoogle Scholar
  35. 35.
    Fu, C.L., Tong, C.F., Wang, M.L., et al.: Determining beta(2)-integrin and intercellular adhesion molecule 1 binding kinetics in tumor cell adhesion to leukocytes and endothelial cells by a gas-driven micropipette assay. J. Biol. Chem. 286, 34777–34787 (2011)CrossRefGoogle Scholar
  36. 36.
    Wu, L., Xiao, B.T., Jia, X.L., et al.: Impact of carrier stiffness and microtopology on two-dimensional kinetics of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) interactions. J. Biol. Chem. 282, 9846–9854 (2007)CrossRefGoogle Scholar
  37. 37.
    Zhang, Y., Sun, G.Y., Lü, S.Q., et al.: Low spring constant regulates P-selectin–PSGL-1 bond rupture. Biophys. J. 95, 5439–5448 (2008)CrossRefGoogle Scholar
  38. 38.
    Wojcikiewicz, E.P., Abdulreda, M.H., Zhang, X.H., et al.: Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2. Biomacromolecules 7, 3188–3195 (2006)CrossRefGoogle Scholar
  39. 39.
    Zhang, X.H., Wojcikiewicz, E., Moy, V.T.: Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. Biophys. J. 83, 2270–2279 (2002)Google Scholar
  40. 40.
    Hukkanen, E.J., Wieland, J.A., Gewirth, A., et al.: Multiple-bond kinetics from single-molecule pulling experiments: evidence for multiple NCAM bonds. Biophys. J. 89, 3434–3445 (2005)CrossRefGoogle Scholar
  41. 41.
    Evans, E.: Probing the relation between force—lifetime—and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001)CrossRefGoogle Scholar
  42. 42.
    Bonanni, B., Kamruzzahan, A.S.M., Bizzarri, A.R., et al.: Single molecule recognition between cytochrome C 551 and gold-immobilized Azurin by force spectroscopy. Biophys. J. 89, 2783–2791 (2005)CrossRefGoogle Scholar
  43. 43.
    Lü, S.Q., Ye, Z.Y., Zhu, C., et al.: Quantifying the effects of contact duration, loading rate, and approach velocity on P-selectin–PSGL-1 interactions using AFM. Polymer 47, 2539–2547 (2006)Google Scholar
  44. 44.
    Kong, F., Garcia, A.J., Mould, A.P., et al.: Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275–1284 (2009)CrossRefGoogle Scholar
  45. 45.
    Chen, W., Lou, J.Z., Zhu, C.: Forcing switch from short- to intermediate- and long-lived states of the alpha A domain generates LFA-1/ICAM-1 catch bonds. J. Biol. Chem. 285, 35967–35978 (2010)CrossRefGoogle Scholar
  46. 46.
    Lou, J.Z., Yago, T., Klopocki, A.G., et al.: Flow-enhanced adhesion regulated by a selectin interdomain hinge. J. Cell Biol. 174, 1107–1117 (2006)CrossRefGoogle Scholar
  47. 47.
    McEver, R.P., Zhu, C.: Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26, 363–396 (2010)CrossRefGoogle Scholar
  48. 48.
    Marshall, B.T., Long, M., Piper, J.W., et al.: Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003)CrossRefGoogle Scholar
  49. 49.
    Wu, Y., Vendomea, J., Shapiroa, L., et al.: Transforming binding affinities from 3D to 2D with application to cadherin clustering. Nature 475, 510–513 (2011)CrossRefGoogle Scholar
  50. 50.
    Kaplanski, G., Farnarier, C., Tissot, O., et al.: Granulocyte endothelium initial adhesion: analysis of transient binding events mediated by E-selectin in a laminar shear-flow. Biophys. J. 64, 1922–1933 (1993)CrossRefGoogle Scholar
  51. 51.
    Long, M., Zhao, H., Huang, K.S., et al.: Kinetic measurements of cell surface E-selectin/carbohydrate ligand interactions. Ann. Biomed. Eng. 29, 935–946 (2001)CrossRefGoogle Scholar
  52. 52.
    Svoboda, K., Schmidt, C.F., Schnapp, B.J., et al.: Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993)CrossRefGoogle Scholar
  53. 53.
    Rinko, L.J., Lawrence, M.B., Guilford, W.H.: The molecular mechanics of P- and L-selectin lectin domains binding to PSGL-1. Biophys. J. 86, 544–554 (2004)CrossRefGoogle Scholar
  54. 54.
    Husson, J., Chemin, K., Bohineust, A., et al.: Force generation upon T cell receptor engagement. Plos One 6, e19680 (2011)CrossRefGoogle Scholar
  55. 55.
    Axmann, M., Huppa, J.B., Davis, M.M., et al.: Determination of interaction kinetics between the T cell receptor and peptide-loaded MHC class II via single-molecule diffusion measurements. Biophys. J. 103, L17–L19 (2012)CrossRefGoogle Scholar
  56. 56.
    Evans, E., Leung, A., Heinrich, V., et al.: Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc. Natl. Acad. Sci. 101, 11281–11286 (2004)CrossRefGoogle Scholar
  57. 57.
    Merkel, R., Nassoy, P., Leung, A., et al.: Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999)CrossRefGoogle Scholar
  58. 58.
    Yang, H.Y., Yu, J.P., Fu, G., et al.: Interaction between single molecules of Mac-1 and ICAM-1 in living cells: an atomic force microscopy study. Exp. Cell Res. 313, 3497–3504 (2007)CrossRefGoogle Scholar
  59. 59.
    Fritz, J., Katopodis, A.G., Kolbinger, F., et al.: Force-mediated kinetics of single P-selectin ligand complexes observed by atomic force microscopy. Proc. Natl. Acad. Sci. 95, 12283–12288 (1998)CrossRefGoogle Scholar
  60. 60.
    Hanley, W., McCarty, O., Jadhav, S., et al.: Single molecule characterization of P-selectin/ligand binding. J. Biol. Chem. 278, 10556–10561 (2003)CrossRefGoogle Scholar
  61. 61.
    Marshall, B.T., Sarangapani, K.K., Lou, J.H., et al.: Force history dependence of receptor–ligand dissociation. Biophys. J. 88, 1458–1466 (2005)CrossRefGoogle Scholar
  62. 62.
    Alon, R., Chen, S.Q., Puri, K.D., et al.: The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J. Cell. Biol. 138, 1169–1180 (1997)CrossRefGoogle Scholar
  63. 63.
    Kitayama, J., Fuhlbrigge, R.C., Puri, K.D., et al.: P-selectin, L-selectin, and alpha(4) integrin have distinct roles in eosinophil tethering and arrest on vascular endothelial cells under physiological flow conditions. J. Immunol. 159, 3929–3939 (1997)Google Scholar
  64. 64.
    Schmidtke, D.W., Diamond, S.L.: Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. J. Cell Biol. 149, 719–729 (2000)CrossRefGoogle Scholar
  65. 65.
    Finger, E.B., Puri, K.D., Alon, R., et al.: Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379, 266–269 (1996)CrossRefGoogle Scholar
  66. 66.
    Riper, J.W., Swerlick, R.A., Zhu, C.: Determining force dependence of two-dimensional receptor–ligand binding affinity by centrifugation. Biophys. J. 74, 492–513 (1998)CrossRefGoogle Scholar
  67. 67.
    Long, M., Chen, J., Jiang, N., et al.: Probabilistic modeling of rosette formation. Biophys. J. 91, 352–363 (2006)CrossRefGoogle Scholar
  68. 68.
    Liang, S.L., Fu, C.L., Wagner, D., et al.: Two-dimensional kinetics of beta(2)-integrin and ICAM-1 bindings between neutrophils and melanoma cells in a shear flow. Am. J. Physiol. 294, C743–C753 (2008)CrossRefGoogle Scholar
  69. 69.
    Long, M., Goldsmith, H.L., Tees, D.F.J., et al.: Probabilistic modeling of shear-induced formation and breakage of doublets cross-linked by receptor–ligand bonds. Biophys. J. 76, 1112–1128 (1999)CrossRefGoogle Scholar
  70. 70.
    Bayas, M.V., Kearney, A., Avramovic, A., et al.: Impact of salt bridges on the equilibrium binding and adhesion of human CD2 and CD58. J. Biol. Chem. 282, 5589–5596 (2007)CrossRefGoogle Scholar
  71. 71.
    Leckband, D.: Design rules for biomolecular adhesion: lessons from force measurements. In: Prausnitz, J.M., Doherty, M.F., Segalman, R.A. (eds.) Annual Review of Chemical and Biomolecular Engineering, vol. 1, pp. 365–389. Annual Reviews, Palo Alto (2010)Google Scholar
  72. 72.
    Tolentino, T.P., Wu, J.H., Zarnitsyna, V.I., et al.: Measuring diffusion and binding kinetics by contact area FRAP. Biophys. J. 95, 920–930 (2008)CrossRefGoogle Scholar
  73. 73.
    Wu, J.H., Fang, Y., Zarnitsyna, V.I., et al.: A coupled diffusion-kinetics model for analysis of contact-area FRAP experiment. Biophys. J. 95, 910–919 (2008)CrossRefGoogle Scholar
  74. 74.
    Jia, X.L., Chen, J., Long, M.: IL-8-induced L-selectin shedding regulates its binding kinetics to PSGL-1. Chin. Sci. Bull. 54, 2786–2793 (2009)CrossRefGoogle Scholar
  75. 75.
    Huppa, J.B., Axmann, M., Mörtelmaier, M.A., et al.: TCR–peptide–MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463, 963–967 (2010)CrossRefGoogle Scholar
  76. 76.
    Grashoff, C., Hoffman, B.D., Brenner, M.D., et al.: Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010)CrossRefGoogle Scholar
  77. 77.
    Chakraborty, S., Núñez, D., Hu, S., et al.: FRET based quantification and screening technology platform for the interactions of leukocyte function-associated antigen-1 (LFA-1) with intercellular adhesion molecule-1 (ICAM-1). Plos One 9, e102572 (2014)CrossRefGoogle Scholar
  78. 78.
    Chigaev, A., Buranda, T., Dwyer, D.C., et al.: FRET detection of cellular \(\alpha \)4-integrin conformational activation. Biophys. J. 85, 3951–3962 (2003)CrossRefGoogle Scholar
  79. 79.
    Sun, G.Y., Zhang, Y., Huo, B., et al.: Surface-bound selectin-ligand binding is regulated by carrier diffusion. Eur. Biophys. J. 38, 701–711 (2009)CrossRefGoogle Scholar
  80. 80.
    Xiao, B.T., Tong, C.F., Jia, X.L., et al.: Tyrosine replacement of PSGL-1 reduces association kinetics with P- and L-selectin on the cell membrane. Biophys. J. 103, 777–785 (2012)CrossRefGoogle Scholar
  81. 81.
    Zhang, F., Marcus, W.D., Goyal, N.H., et al.: Two-dimensional kinetics regulation of alpha(L)beta(2)-ICAM-1 interaction by conformational changes of the alpha(L)-inserted domain. J. Biol. Chem. 280, 42207–42218 (2005)CrossRefGoogle Scholar
  82. 82.
    Evans, E., Kinoshita, K., Simon, S., et al.: Long-lived, high-strength states of ICAM-1 bonds to beta(2) integrin, I: lifetimes of bonds to recombinant alpha(L) beta(2) under force. Biophys. J. 98, 1458–1466 (2010)CrossRefGoogle Scholar
  83. 83.
    Kinoshita, K., Leung, A., Simon, S., et al.: Long-lived, high-strength states of ICAM-1 bonds to beta(2) integrin, II: lifetimes of LFA-1 bonds under force in leukocyte signaling. Biophys. J. 98, 1467–1475 (2010)CrossRefGoogle Scholar
  84. 84.
    Li, N., Zhang, Y., Sun, G.Y., et al.: Rupture force and lifetime measurements for non-specific interactions. J. Med. Biomech. 22, 35–39 (2007)Google Scholar
  85. 85.
    Zhu, C., Long, M., Chesla, S.E., et al.: Measuring receptor/ligand interaction at the single-bond level: experimental and interpretative issues. Ann. Biomed. Eng. 30, 305–314 (2002)CrossRefGoogle Scholar
  86. 86.
    Sun, G.Y., Zhang, Y., Huo, B., et al.: Parametric analysis for monitoring 2D kinetics of receptor–ligand binding. Cell. Mole. Bioeng. 2, 495–503 (2009)CrossRefGoogle Scholar
  87. 87.
    Li, N., Mao, D.B., Lü, S.Q., et al.: Distinct binding affinities of Mac-1 and LFA-1 in neutrophil activation. J. Immunol. 190, 4371–4381 (2013)CrossRefGoogle Scholar
  88. 88.
    Zhan, D.Y., Zhang, Y., Long, M.: Spreading of human neutrophils on an ICAM-1-immobilized substrate under shear flow. Chin. Sci. Bull. 57, 769–775 (2012)CrossRefGoogle Scholar
  89. 89.
    Zhang, Y., Ye, Z.Y., Huo, B., et al.: Rupture force measurements for P-selectin/PSGL-1 bonds using an optical trap assay. J. Med. Biomech. 22, 961–965 (2005)Google Scholar
  90. 90.
    Zhang, Y., Lü, S.Q., Long, M.: Probe stiffness regulates receptor–ligand bond lifetime under force. Sci. Chin. 54, 923–929 (2011)CrossRefGoogle Scholar
  91. 91.
    Celik, E., Faridi, M.H., Kumar, V., et al.: Agonist Leukadherin-1 increases CD11b/CD18-dependent adhesion via membrane tethers. Biophys. J. 105, 2517–2527 (2013)CrossRefGoogle Scholar
  92. 92.
    Xu, G., Feng, X., Zhao, H., et al.: Theoretical study of the competition between cell–cell and cell–matrix adhesions. Phys. Rev. E. 80, 011921 (2009)CrossRefGoogle Scholar
  93. 93.
    Xu, G., Yang, C., Du, J., et al.: Integrin activation and internalization mediated by extracellular matrix elasticity: a biomechanical model. Biomechanics 47, 1479–1484 (2014)CrossRefGoogle Scholar
  94. 94.
    Lü, S.Q., Long, M.: Forced extension of P-selectin construct using steered molecular dynamics. Chin. Sci. Bull. 49, 10–17 (2004)CrossRefGoogle Scholar
  95. 95.
    Lü, S., Long, M.: Forced dissociation of selectin-ligand complexes using steered molecular dynamics simulation. Mol. Cell. Biomech. 2, 161–177 (2005)Google Scholar
  96. 96.
    Lü, S.Q., Zhang, Y., Long, M.: Visualization of allostery in P-selectin lectin domain using MD simulations. Plos One 5, e15417 (2010)Google Scholar
  97. 97.
    Kang, Y.Y., Lü, S.Q., Ren, P., et al.: Molecular dynamics simulation of shear- and stretch-induced dissociation of P-selectin/PSGL-1 complex. Biophys. J. 102, 112–120 (2012)CrossRefGoogle Scholar
  98. 98.
    Mao, D.B., Lü, S.Q., Li, N., et al.: Conformational stability analyses of alpha subunit I domain of LFA-1 and Mac-1. Plos One 6, e24188 (2011)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations