Acta Mechanica Sinica

, Volume 31, Issue 2, pp 205–215 | Cite as

An elastic model for bioinspired design of carbon nanotube bundles

  • Xiaoyu Sun
  • Zuoqi ZhangEmail author
  • Yuanjie Xu
  • Yongwei Zhang
Research Paper


Collagen fibers provide a good example of making strong micro- or mesoscale fibers from nanoscale tropocollagen molecules through a staggered and cross-linked organization in a bottom-up manner. Mimicking the architectural features of collagen fibers has been shown to be a promising approach to develop carbon nanotube (CNT) fibers of high performance. In the present work, an elastic model is developed to describe the load transfer and failure propagation within the bioinspired CNT bundles, and to establish the relations of the mechanical properties of the bundles with a number of geometrical and physical parameters such as the CNT aspect ratio and longitudinal gap, interface cross-link density, and the functionalization-induced degradation in CNTs, etc. With the model, the stress distributions along the CNT–CNT interface as well as in every individual CNT are well captured, and the failure propagation along the interface and its effects on the mechanical properties of the CNT bundles are predicted. The work may provide useful guidelines for the design of novel CNT fibers in practice.

Graphical Abstract

Mimicking the staggered and cross-linked features of collagen fibril structure has been shown to be a promising approach to develop carbon nanotube (CNT) fibers of high performance. In this work, an elastic model is developed to describe the load transfer and failure propagation within the collagen-inspired CNT bundles. With the model, the relations of the mechanical properties of the bundles with a number of geometrical and physical parameters are established, two failure modes and their transition are predicted, and optimal interface design to eliminate interface stress concentration are discussed.


Carbon nanotube fiber Collagen-mimic design Staggered pattern Interface modification 



Zuoqi Zhang and Yongwei Zhang acknowledge the support from IHPC, A*STAR. The work is partially supported by the China Postdoctoral Science Foundation (Grant No. 2014M562055).


  1. 1.
    Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)CrossRefGoogle Scholar
  2. 2.
    Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)CrossRefGoogle Scholar
  3. 3.
    Goh, P.S., Ismail, A.F., Ng, B.C.: Directional alignment of carbon nanotubes in polymer matrices: contemporary approaches and future advances. Compos. Part A: Appl. Sci. Manuf 56, 103–126 (2014)CrossRefGoogle Scholar
  4. 4.
    Filleter, T., Espinosa, H.D.: Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking. Carbon 56, 1–11 (2013)CrossRefGoogle Scholar
  5. 5.
    Lu, W., Zu, M., Byun, J.-H., et al.: State of the art of carbon nanotube fibers: opportunities and challenges. Adv. Mater. 24, 1805–1833 (2012)CrossRefGoogle Scholar
  6. 6.
    Yan, Y.H., Chan-Park, M.B., Zhang, Q.: Advances in carbon-nanotube assembly. Small 3, 24–42 (2007)CrossRefGoogle Scholar
  7. 7.
    Salvetat, J.P., Briggs, G.A.D., Bonard, J.M., et al.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)CrossRefGoogle Scholar
  8. 8.
    Kis, A., Csanyi, G., Salvetat, J.P., et al.: Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 3, 153–157 (2004)CrossRefGoogle Scholar
  9. 9.
    Ajayan, P.M., Banhart, F.: Nanotubes: strong bundles. Nat. Mater. 3, 135–136 (2004)CrossRefGoogle Scholar
  10. 10.
    Peng, B., Locascio, M., Zapol, P., et al.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3, 626–631 (2008)CrossRefGoogle Scholar
  11. 11.
    Filleter, T., Bernal, R., Li, S., et al.: Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv. Mater. 23, 2855–2860 (2011)CrossRefGoogle Scholar
  12. 12.
    Ni, B., Andrews, R., Jacques, D., et al.: A combined computational and experimental study of ion-beam modification of carbon nanotube bundles. J Phys. Chem. B 105, 12719–12725 (2001)CrossRefGoogle Scholar
  13. 13.
    Pregler, S.K., Jeong, B.W., Sinnott, S.B.: Ar beam modification of nanotube based composites using molecular dynamics simulations. Compo. Sci. Technol. 68, 2049–2055 (2008)CrossRefGoogle Scholar
  14. 14.
    O’Brien, N.P., McCarthy, M.A., Curtin, W.A.: A theoretical quantification of the possible improvement in the mechanical properties of carbon nanotube bundles by carbon ion irradiation. Carbon 53, 346–356 (2013)CrossRefGoogle Scholar
  15. 15.
    O’Brien, N.P., McCarthy, M.A., Curtin, W.A.: Improved inter-tube coupling in CNT bundles through carbon ion irradiation. Carbon 51, 173–184 (2013)CrossRefGoogle Scholar
  16. 16.
    Gong, X.Y., Liu, J., Baskaran, S., et al.: Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 12, 1049–1052 (2000)CrossRefGoogle Scholar
  17. 17.
    Zhang, Z.Q., Liu, B., Chen, Y.L., et al.: Mechanical properties of functionalized carbon nanotubes. Nanotechnology 19, 395702 (2008)CrossRefGoogle Scholar
  18. 18.
    Mielke, S.L., Troya, D., Zhang, S., et al.: The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem. Phys. Lett. 390, 413–420 (2004)CrossRefGoogle Scholar
  19. 19.
    Foroughi, J., Spinks, G.M., Wallace, G.G., et al.: Torsional carbon nanotube artificial muscles. Science 334, 494–497 (2011)CrossRefGoogle Scholar
  20. 20.
    Bratzel, G.H., Cranford, S.W., Espinosa, H., et al.: Bioinspired noncovalently crosslinked “fuzzy” carbon nanotube bundles with superior toughness and strength. J. Mater. Chem. 20, 10465–10474 (2010)Google Scholar
  21. 21.
    Joshi, U.A., Sharma, S.C., Harsha, S.P.: Effect of waviness on the mechanical properties of carbon nanotube based composites. Phys. E-Low-Dimens. Sys. Nanostructures 43, 1453–1460 (2011)CrossRefGoogle Scholar
  22. 22.
    Wang, H.: Dispersing carbon nanotubes using surfactants. Curr. Opin. Colloid Interface Sci. 14, 364–371 (2009)CrossRefGoogle Scholar
  23. 23.
    Blanch, A.J., Lenehan, C.E., Quinton, J.S.: Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 114, 9805–9811 (2010)CrossRefGoogle Scholar
  24. 24.
    Krause, B., Mende, M., Poetschke, P., et al.: Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon 48, 2746–2754 (2010)CrossRefGoogle Scholar
  25. 25.
    Sato, H., Sano, M.: Characteristics of ultrasonic dispersion of carbon nanotubes aided by antifoam. Colloids Surf. A: Physicochem. Eng. Asp. 322, 103–107 (2008)CrossRefGoogle Scholar
  26. 26.
    Ajayan, P.M., Stephan, O., Colliex, C., et al.: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 1212–1214 (1994)CrossRefGoogle Scholar
  27. 27.
    Sulong, A.B., Park, J.: Alignment of multi-walled carbon nanotubes in a polyethylene matrix by extrusion shear flow: mechanical properties enhancement. J. Compos. Mater. 45, 931–941 (2011)CrossRefGoogle Scholar
  28. 28.
    Jin, L., Bower, C., Zhou, O.: Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73, 1197–1199 (1998)CrossRefGoogle Scholar
  29. 29.
    Wang, D., Song, P., Liu, C., et al.: Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19, 075609 (2008)CrossRefGoogle Scholar
  30. 30.
    Kimura, T., Ago, H., Tobita, M., et al.: Polymer composites of carbon nanotubes aligned by a magnetic field. Adv. Mater. 14, 1380–1383 (2002)CrossRefGoogle Scholar
  31. 31.
    Dror, Y., Salalha, W., Khalfin, R.L., et al.: Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19, 7012–7020 (2003)Google Scholar
  32. 32.
    Feng, W., Bai, X.D., Lian, Y.Q., et al.: Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 41, 1551–1557 (2003)CrossRefGoogle Scholar
  33. 33.
    Zhang, Q., Huang, J.Q., Zhao, M.Q., et al.: Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres. Carbon 46, 1152–1158 (2008)CrossRefGoogle Scholar
  34. 34.
    Haggenmueller, R., Gommans, H.H., Rinzler, A.G., et al.: Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330, 219–225 (2000)CrossRefGoogle Scholar
  35. 35.
    Bradford, P.D., Wang, X., Zhao, H., et al.: A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos. Sci. Technol. 70, 1980–1985 (2010)CrossRefGoogle Scholar
  36. 36.
    Ryu, S., Lee, Y., Hwang, J.W., et al.: High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer. Adv. Mater. 23, 1971–1975 (2011)CrossRefGoogle Scholar
  37. 37.
    Buehler, M.J.: Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA 103, 12285–12290 (2006)CrossRefGoogle Scholar
  38. 38.
    Buehler, M.J.: Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J. Mech. Behav. Biomed. Mater. 1, 59–67 (2008)CrossRefGoogle Scholar
  39. 39.
    Gao, H., Ji, B., Jager, I.L., et al.: Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. USA 100, 5597–5600 (2003)CrossRefGoogle Scholar
  40. 40.
    Ji, B., Gao, H.: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963–1990 (2004)CrossRefzbMATHGoogle Scholar
  41. 41.
    Zhang, Z., Zhang, Y.W., Gao, H.: On optimal hierarchy of load-bearing biological materials. Proc. R. Soc. B 278, 519–525 (2011)CrossRefGoogle Scholar
  42. 42.
    Jager, I., Fratzl, P.: Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79, 1737 (2000)CrossRefGoogle Scholar
  43. 43.
    Rho, J.-Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)CrossRefGoogle Scholar
  44. 44.
    Meyers, M.A., McKittrick, J., Chen, P.-Y.: Structural biological materials: critical mechanics-materials connections. Science 339, 773–779 (2013)CrossRefGoogle Scholar
  45. 45.
    Zhang, Z.Q., Liu, B., Huang, Y., et al.: Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution. J. Mech. Phys. Solids 58, 1646–1660 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Zhang, Z.Q., Zhong, Y., Liu, B., et al.: Mechanical properties of staggered-alignment biomimetic composites. Adv. Heterog. Mater. Mech. 2008, 606–609 (2008)Google Scholar
  47. 47.
    Lei, H.F., Zhang, Z.Q., Liu, B.: Effect of fiber arrangement on mechanical properties of short fiber reinforced composites. Compos. Sci. Technol. 72, 506–514 (2012)CrossRefGoogle Scholar
  48. 48.
    Zhang, Z.Q., Liu, B., Zhang, Y.W., et al.: Ultra-strong collagen-mimic carbon nanotube bundles. Carbon 77, 1040–1053 (2014)CrossRefGoogle Scholar
  49. 49.
    Zhao, Z.L., Zhao, H.P., Wang, J.S., et al.: Mechanical properties of carbon nanotube ropes with hierarchical helical structures. J. Mech. Phys. Solids 71, 64–83 (2014)CrossRefMathSciNetGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xiaoyu Sun
    • 1
  • Zuoqi Zhang
    • 2
    Email author
  • Yuanjie Xu
    • 1
  • Yongwei Zhang
    • 2
  1. 1.School of Civil EngineeringWuhan UniversityWuhanChina
  2. 2.Institute of High Performance Computing, A*STARSingaporeSingapore

Personalised recommendations