Skip to main content

Analysis of bending and buckling of pre-twisted beams: A bioinspired study

Abstract

Twisting chirality is widely observed in artificial and natural materials and structures at different length scales. In this paper, we theoretically investigate the effect of twisting chiral morphology on the mechanical properties of elastic beams by using the Timoshenko beam model. Particular attention is paid to the transverse bending and axial buckling of a pre-twisted rectangular beam. The analytical solution is first derived for the deflection of a clamped-free beam under a uniformly or periodically distributed transverse force. The critical buckling condition of the beam subjected to its self-weight and an axial compressive force is further solved. The results show that the twisting morphology can significantly improve the resistance of beams to both transverse bending and axial buckling. This study helps understand some phenomena associated with twisting chirality in nature and provides inspirations for the design of novel devices and structures.

This is a preview of subscription content, access via your institution.

References

  1. Oda, R., Huc I., Schmutz, M., et al.: Tuning bilayer twist using chiral counterions. Nature 399, 566–569 (1999)

    Article  Google Scholar 

  2. Ye, H.M., Wang, J.S., Tang, S., et al.: Surface stress effects on the bending direction and twisting chirality of lamellar crystals of chiral polymer. Macromole. 43, 5762–5770 (2010)

    Article  Google Scholar 

  3. Garcia-Ruiz, J.M., Melero-García, E., Hyde, S.T.: Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323, 362–365 (2009)

    Article  Google Scholar 

  4. Lotz, B., Gonthier-Vassal, A., Brack, A., et al.: Twisted single crystals of Bombyx mori silk fibroin and related model polypeptides with β structure: A correlation with the twist of the β sheets in globular proteins. J. Mol. Biol. 156, 345–357 (1982)

    Article  Google Scholar 

  5. Ji, X.Y., Zhao, M.Q., Wei, F., et al.: Spontaneous formation of double helical structure due to interfacial adhesion. Appl. Phys. Lett. 100, 263104 (2012)

    Article  Google Scholar 

  6. Paniagua, R., Royuela, M., Garcia-Anchuelo, R.M., et al.: Ultrastructure of invertebrate muscle cell types. Histol. Histopath. 11, 181–201 (1996)

    Google Scholar 

  7. Wang, X., Sturegård, E., Rupar, R., et al.: Infection of BALB/c A mice by spiral and coccoid forms of Helicobacter pylori. J. Med. Microbiol. 46, 657–663 (1997)

    Article  Google Scholar 

  8. Wang, J.S., Wang, G., Feng, X.Q., et al.: Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Sci. Rep. 3, 3102 (2013)

    Google Scholar 

  9. Schulgasser, K., Witztum, A.: Spiralling upward. J. Theor. Biol. 230, 275–280 (2004)

    Article  Google Scholar 

  10. Schulgasser, K., Witztum, A.: The hierarchy of chirality. J. Theor. Biol. 230, 281–288 (2004)

    Article  Google Scholar 

  11. Chen, X., Yang, S., Motojima, S., et al.: Morphology and microstructure of twisting nano-ribbons prepared using sputter-coated Fe-base alloy catalysts on glass substrates. Mater. Lett. 59, 854–858 (2005)

    Article  Google Scholar 

  12. The Paphiopedilum dianthum picture is from the website of http://upload.wikimedia.org/wikipedia/commons/e/eb/Paphio-pedilum_dianthum_Orchi_15.eps.

  13. Carnegie, W.: Vibrations of pre-twisted cantilever blading. Proc. Inst. Mech. Eng. 173, 343–374 (1959)

    Article  Google Scholar 

  14. Carnegie, W.: Vibrations of pre-twisted cantilever blading allowing for rotary inertia and shear deflection. J. Mech. Eng. Sci. 6, 105–109 (1964)

    Article  Google Scholar 

  15. Lin, S.C., Hsiao, K.M.: Vibration analysis of a rotating Timoshenko beam. J. Sound Vibr. 240, 303–322 (2001)

    Article  MATH  Google Scholar 

  16. Zhu, T.L.: The vibrations of pre-twisted rotating Timoshenko beams by the Rayleigh-Ritz method. Comput. Mech. 47, 395–408 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang, J.S., Ye, H.M., Qin, Q.H., et al.: Anisotropic surface effects on the formation of chiral morphologies of nanomaterials. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 468, 609–633 (2012)

    Article  Google Scholar 

  18. Carnegie, W.: Static bending of pre-twisted cantilever blading. Proc. Inst. Mech. Eng. 171, 873–894 (1957)

    Article  Google Scholar 

  19. Subrahmanyam, K.B., Kulkarni, S.V., Rao, J.S.: Static bending of pretwisted cantilever blading. In: Proceeding of the Indian Society of Theoretical and Applied Mechanics Twenty-Fourth Congress, 37–64 (1980)

    Google Scholar 

  20. Abid, S., Taktak, M., Dammak, F., et al.: An accurate two-node finite element for the pre-twisted beam modelling. J. Mech. Eng. 59, 135–150 (2008)

    Google Scholar 

  21. Chen, W.R.: Bending behavior of twisted Timoshenko beams under distributed transverse loads. Hwa Kang J. Eng. Chin. Univ. 26, 19–26 (2010)

    Google Scholar 

  22. Chen, W.R.: Parametric studies on bending of twisted Timoshenko beams under complex loadings. J. Mech. 28, N1–N6 (2012)

    Article  Google Scholar 

  23. Ziegler, H.: Die Knickung des verwundenen Stabes. Schweiz. Bauz. 66, 463–465 (1948)

    Google Scholar 

  24. Ziegler, H.: Stabilitätsprobleme bei geraden Stäben und Wellen. ZAMP 2, 265–289 (1951)

    Article  MATH  Google Scholar 

  25. Lüscher, E.: Bemerkungen zur Knickung des verwundenen, einseitig eingespannten Stabes. Schweiz. Bauz. 71, 172–173 (1953)

    Google Scholar 

  26. Leipholz, H.: Knickung verwundener Stäbe unter Druck einer konservativen, kontinuierlich und gleichmäßig verteilten Belastung. Arch. Appl. Mech. 29, 262–279 (1960)

    MATH  MathSciNet  Google Scholar 

  27. Nixdorff, K.: Zur Knickung verwundener Stäbe bei zusammengesetzter Belastung. Arch. Appl. Mech. 37, 92–98 (1968)

    MATH  Google Scholar 

  28. Tabarrok, B., Yuexi, X., Steinman, D., et al.: On buckling of pretwisted columns. Int. J. Solids Struct. 26, 59–72 (1990)

    Article  MATH  Google Scholar 

  29. Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33, 335–340 (1966)

    Article  MATH  Google Scholar 

  30. Nixdorff, K.: Neuere Ergebnisse zur Knickung verwundener Stäbe. Ing. Arch. 36, 126–134 (1967)

    Article  Google Scholar 

  31. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability 2nd Edition. McGraw-Hill, New York (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Qiao Feng.

Additional information

The project was supported by the National Natural Science Foundation of China (31270989 and 11372162), the 973 Program of MOST (2010CB631005 and 2012CB934001), and Tsinghua University (20121087991).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZL., Zhao, HP., Chang, Z. et al. Analysis of bending and buckling of pre-twisted beams: A bioinspired study. Acta Mech Sin 30, 507–515 (2014). https://doi.org/10.1007/s10409-014-0067-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0067-0

Keywords

  • Twisting chirality
  • Timoshenko beam
  • Bending
  • Euler buckling
  • Bionics