Acta Mechanica Sinica

, Volume 30, Issue 4, pp 495–506 | Cite as

Wing/body kinematics measurement and force and moment analyses of the takeoff flight of fruitflies

  • Mao-Wei Chen
  • Mao Sun
Research Paper Fluid Mechanics


In the paper, we present a detailed analysis of the takeoff mechanics of fruitflies which perform voluntary takeoff flights. Wing and body kinematics of the insects during takeoff were measured using high-speed video techniques. Based on the measured data, inertia force acting on the insect was computed and aerodynamic force and moment of the wings were calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. The following has been shown. In its voluntary takeoff, a fruitfly jumps during the first wingbeat and becomes airborne at the end of the first wingbeat. When it is in the air, the fly has a relatively large “initial” pitch-up rotational velocity (more than 5 000°/s) resulting from the jumping, but in about 5 wing-beats, the pitch-up rotation is stopped and the fly goes into a quasi-hovering flight. The fly mainly uses the force of jumping legs to lift itself into the air (the force from the flapping wings during the jumping is only about 5%–10% of the leg force). The main role played by the flapping wings in the takeoff is to produce a pitch-down moment to nullify the large “initial” pitch-up rotational velocity (otherwise, the fly would have kept pitching-up and quickly fallen down).


Fruitfly Takeoff flight Body and wing kinematics Aerodynamic and leg forces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pond, C.M.: The initiation of flight in unrestrained locusts. Schistocerca gregaria. J. Comp. Physiol. 80, 163–178 (1972)CrossRefGoogle Scholar
  2. 2.
    Govind, C.K., Dandy, J.W.T.: Non-fibrillar muscles and the start and cessation of flight in the milkweed bug. Oncopeltus. J. Comp. Physiol. 77, 398–417 (1972)CrossRefGoogle Scholar
  3. 3.
    Trimachi, J.R., Schneiderman, A.M.: Initiation of flight in the unrestrained fly. Drosophila melanogaster. J. Zool. 235, 211–222 (1995)CrossRefGoogle Scholar
  4. 4.
    Card, G., Dickinson, M.H.: Performance trade-offs in the flight initiation of Drosophila. J. Exp. Biol. 211, 341–353 (2008)CrossRefGoogle Scholar
  5. 5.
    Fontaine, E.I., Zzbala, F., Dickinson, M.H., et al: Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking. J. Exp. Biol. 212, 1307–1323 (2009)CrossRefGoogle Scholar
  6. 6.
    Sunada, S., Kawachi, K., Watanabe, I., et al: Performance of a butterfly in take-off flight. J. Exp. Biol. 183, 249–277 (1993)Google Scholar
  7. 7.
    Weis-Fogh, T.: Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59, 169–230 (1973)Google Scholar
  8. 8.
    Chen, M.W., Zhang, Y.L., Sun, M.: Wing and body motion and aerodynamic and leg forces during take-off in droneflies. J. R. Soc. Interface 10, 20130808 (2013)CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Sun, M.: Wing kinematics measurement and aerodynamics of hovering droneflies. J. Exp. Biol. 211, 2014–2025 (2008)CrossRefGoogle Scholar
  10. 10.
    Mou, X.L., Liu, Y.P., Sun, M.: Wing motion measurement and aerodynamics of hovering true hoverflies. J. Exp. Biol. 214, 2832–2844 (2011)CrossRefGoogle Scholar
  11. 11.
    Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of hovering flight in Drosophila. J. Exp. Biol. 208, 2303–2318 (2005)CrossRefGoogle Scholar
  12. 12.
    Aono, H., Liang, F., Liu, H.: Near- and far- field aerodynamics in insect hovering flight: an integrated computational study. J. Exp. Biol., 211, 239–257 (2008)CrossRefGoogle Scholar
  13. 13.
    Liang, B., Sun, M.: Aerodynamic interactions between contralateral wings and between wings and body of a model insect at hovering and small speed motions. Chin. J. Aeronaut. 24, 396–409 (2011)CrossRefGoogle Scholar
  14. 14.
    Yu, X., Sun, M.: A computational study of the wing-wing and wing-body interactions of a model insect. Acta Mech. Sinica 25, 421–431 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Sun, M., Yu, X.: Aerodynamic force generation in hovering flight in a tiny insect. AIAA J. 44, 1532–1540 (2006)CrossRefGoogle Scholar
  16. 16.
    Rogers, S.E., Kwak, D., Kiris, C.: Numerical solution of the incompressible Navier-Stokes equations for steady-state and dependent problems. AIAA J. 29, 603–610 (1991)CrossRefGoogle Scholar
  17. 17.
    Rogers, S.E., Pulliam, T.H.: Accuracy enhancements for overset grids using a defect correction approach. AIAA Paper No. 94-0523 (1994)Google Scholar
  18. 18.
    Prewitt, N.C., Belk, D.M., Shyy, W.: Parallel computing of overset grids for aerodynamic problems with moving objects. Prog. Aerosp. Sci. 36, 117–172 (2000)CrossRefGoogle Scholar
  19. 19.
    Chan, W.M.: Overset grid technology development at NASA Ames Research Center. Comput. Fluids 38, 496–503 (2009)CrossRefGoogle Scholar
  20. 20.
    Maruoka, A.: Finite element analysis for flow around a rotating body using Chimera method. Int. J. Comput. Fluid Dynamics 17, 289–297 (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, X.: Computation of viscous incompressible flow using pressure correction method on unstructured Chimera grid. Int. J. Comput. Fluid Dynamics 20, 637–650 (2006)CrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, X., Ni, S.Z., He, G.W.: A pressure-correction method and its applications on an unstructured Chimera grid. Comput. Fluids 37, 993–1010 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Togashi, F., Yasushi, I., Mitsuhiro, M., et al: Flow simulation of flapping wings of an insect using overset unstructured grid. AIAA Paper No. 2001-261 (2001)Google Scholar
  24. 24.
    Hilgenstock, A.: A fast method for the elliptic generation of three dimensional grids with full boundary control. In: Num. Grid Generation in CFM’88 (Sengupta, S., Hauser, J., Eiseman, P.R., Thompson, J.F. edn.), Pineridge Press Ld, Swansea UK 137–146 (1988)Google Scholar
  25. 25.
  26. 26.
    Ellington, C.P.: The aerodynamics of hovering insect flight. III. Kinematics. Phil. Trans. R. Soc. Ser. B 305, 17–40 (1984)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Ministry-of-Education Key Laboratory of Fluid MechanicsBeihang UniversityBeijingChina

Personalised recommendations