Acta Mechanica Sinica

, Volume 30, Issue 3, pp 339–350 | Cite as

Scaling law of resolved-scale isotropic turbulence and its application in large-eddy simulation

Research Paper


Eddy-dampingquasinormal Markovian (EDQNM) theory is employed to calculate the resolved-scale spectrum and transfer spectrum, based on which we investigate the resolved-scale scaling law. Results show that the scaling law of the resolved-scale turbulence, which is affected by several factors, is far from that of the full-scale turbulence and should be corrected. These results are then applied to an existing subgrid model to improve its performance. A series of simulations are performed to verify the necessity of a fixed scaling law in the subgrid modeling.


Scaling law Large-eddy simulation CZZS model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landau, L., Lifshits, E.: Fluid Mechanics. Pergmon Press, London (1963)MATHGoogle Scholar
  2. 2.
    Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence. Journal of Fluid Mechanics 13, 82–85 (1962)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    She, Z.S., Leveque, E.: Universal scaling law in fully developed turbulence. Physics Review Letters 72, 336 (1994)CrossRefGoogle Scholar
  4. 4.
    Benzi, R., Ciliberto, S., Baudet, C., et al.: On the scaling of three-dimensional homogeneous and isotropic turbulence. Physica D 80, 385–398 (1995)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Qian, J.: Inertial range and the finite reynolds number effect of turbulence. Physical Review E 55, 337–342 (1997)CrossRefGoogle Scholar
  6. 6.
    Qian, J.: Normal and anomalous scaling of turbulence. Physical Review E 58, 7325–7329 (1998)CrossRefGoogle Scholar
  7. 7.
    Barenblatt, G., Chorin, A., Prostokishin, V.: Comment on the paper on the scaling of three-dimensional homogeneous and isotropic turbulence, Benzi et al. eds. Physica D 127, 105–110 (1999)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Tatarskii, V.I.: Use of the 4/5 Kolmogorov equation for describing some characteristics of fully developed turbulence. Physics of Fluids 17, 035110 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Fang, L., Bos, W., Zhou, X., et al.: Corrections to the scaling of the second-order structure function in isotropic turbulence. Acta Mechanica Sinica 26, 151–157 (2010)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Batchelor, G.K.: Pressure fluctuations in isotropic turbulence. Proc. Cambridge Philos. Soc. 47, 359–374 (1951)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Lohse, D., Muller-Groeling, A.: Bottleneck effects in turbulence: scaling phenomena in r versus p space. Physical Review Letters 74, 1747–1750 (1995)CrossRefGoogle Scholar
  12. 12.
    Meneveau, C.: Transition between viscous and inertial-range scaling of turbulence structure functions. Physical Review E 54, 3657–3663 (1996)CrossRefGoogle Scholar
  13. 13.
    Cui, G., Zhou, H., Zhang, Z., et al.: A new dynamic subgrid eddy viscosity model with application to turbulent channel flow. Physics of Fluids 16, 2835–2842 (2004)CrossRefGoogle Scholar
  14. 14.
    Fang, L., Shao, L., Bertoglio, J., et al.: An improved velocity increment model based on Kolmogorov equation of filtered velocity. Physics of Fluids 21, 065108 (2009)CrossRefGoogle Scholar
  15. 15.
    Berland, J., Bogey, C., Bailly, C.: Investigation using statistical closure theory of the influence of the filter shape on scale separation in large-eddy simulation. Journal of Turbulence 9, N21 (2008)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Pope, S.: Turbulent Flows. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  17. 17.
    Hinze, J.O.: Turbulence. (2nd edn.) McGraw-Hill, New York (1975)Google Scholar
  18. 18.
    Kraichnan, R.: The structure of isotropic turbulence at very high Reynolds numbers. Journal of Fluid Mechanics 5, 497–543 (1959)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Edwards, S.: The statistical dynamics of homogeneous turbulence. Journal of Fluid Mechanics 18, 239–273 (1964)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Orszag, S.A.: Lectures on the statistical theory of turbulence. Flow Research Incorporated (1974)Google Scholar
  21. 21.
    Lesieur, M.: Turbulence in Fluids. Kluwer Academic, Dordrecht (1997)CrossRefMATHGoogle Scholar
  22. 22.
    Bos, W., Chevillard, L., Scott, J., et al.: Reynolds number effects on the velocity increment skewness in isotropic turbulence. Physics of Fluids 24, 015108 (2012)CrossRefGoogle Scholar
  23. 23.
    Tchoufag, J., Sagaut, P., Cambon, C.: Spectral approach to finnite Reynolds number effects on Kolmogorov’s 4/5 law in isotropic turbulence. Physics of Fluids 24, 015107 (2012)CrossRefGoogle Scholar
  24. 24.
    Sagaut, P.: Large Eddy Simulation for Imcompressible Flows. Springer, New York (2006)Google Scholar
  25. 25.
    Touil, H., Bertoglio, J., Shao, L.: The decay of turbulence in a bounded domain. Journal of Turbulence 3, 49 (2002)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Fang, L., Shao, L., Bertoglio, J., et al.: The rapid-slow decomposition of the subgrid flux in inhomogeneous scalar turbulence. Journal of Turbulence 12, 1–23 (2011)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Cui, G., Xu, C., Fang, L., et al.: A new subgrid eddyviscosity model for large-eddy simulation of anisotropic turbulence. Journal of Fluid Mechanics 582, 377–397 (2007)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Fang, L.: A new dynamic formula for determining the coefficient of smagorinsky model. Theoretical and Applied Mechanics Letters 1, 032002 (2011)CrossRefGoogle Scholar
  29. 29.
    He, G., Rubinstein, R., Wang, L.: Effects of subgrid-scale modeling on time correlations in large eddy simulation. Physics of Fluids 14, 2186–2193 (2002)CrossRefGoogle Scholar
  30. 30.
    Vinkovic, I., Aguirre, C., Simoens, S., et al.: Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow. International Journal of Multiphase Flow 32, 344–364 (2006)CrossRefMATHGoogle Scholar
  31. 31.
    Yang, Y., He, G., Wang, L.: Effects of subgrid-scale modeling on lagrangian statistics in large-eddy simulation. Journal of Turbulence 9, 1–24 (2008)MathSciNetGoogle Scholar
  32. 32.
    Jin, G., He, G., Wang, L.: Large-eddy simulation of turbulentcollision of heavy particles in isotropic turbulence. Physics of Fluids 22, 055106 (2010)CrossRefGoogle Scholar
  33. 33.
    Jin, G., He, G., Wang, L., et al.: Subgrid scale fluid velocity time scales seen by inertial particles in large eddy simulation of particle-laden turbulence. International Journal Multiphase Flow 36, 432–437 (2010)CrossRefGoogle Scholar
  34. 34.
    Jin, G., He, G.: A nonlinear model for the subgrid timescale experienced by heavy particles in large eddy simulation of isotropic turbulence with a stochastic differential equation. New Journal of Physics 15, 035011 (2013)CrossRefGoogle Scholar
  35. 35.
    Rogallo, R.: Numerical experiments in homogeneous turbulence. NASA TM 81315 (1981)Google Scholar
  36. 36.
    Métais, O., Lesieur, M.: Spectral large-eddy simulation of isotropic and stably stratified turbulence. Journal of Fluid Mechanics 239, 157–194 (1992)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Fang, L., Bos., W., Shao, L., et al.: Time-reversibility of Navier-Stokes turbulence and its implication for subgrid scale models. Journal of Turbulence 13, 1–14 (2012)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Berland, J., Bogey, C., Bailly, C.: A study of differentiation error in large-eddy simulations based on the EDQNM theory. Journal of Computational Physics 227, 8314–8340 (2008)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Brun, C., Friedrich, R., da Silva, C.: A non-linear SGS model based on the spatial velocity increment. Theoretical and Computational Fluid Dynamics 20, 1–21 (2006)CrossRefMATHGoogle Scholar
  40. 40.
    Pumir, A., Shraiman, B.: Lagrangian particle approach to large eddy simulations of hydrodynamic turbulence. Journal of Statistical Physics 113, 693–700 (2003)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Fang, L., Boudet, J., Shao, L.: Les échanges inter-echelles en simulation des grandes échelles. 18e Congrés Francáis de Mécanique (2007) (in French)Google Scholar
  42. 42.
    Chollet, J., Lesieur, M.: Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. Journal of the Atmospheric Sciences 38, 2747–2757 (1981)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.École Centrale de PékinBeihang UniversityBeijingChina
  2. 2.The State Key Laboratory of Nonlinear MechanicsChinese Academy of ScienceBeijingChina
  3. 3.Laboratoire de Mécanique des Fluides et d’AcoustiqueUniversité de Lyon, École centrale de LyonEcullyFrance
  4. 4.School of Energy and Power EngineeringBeihang UniversityBeijingChina

Personalised recommendations