Skip to main content
Log in

An implicit upwind parabolized Navier-Stokes code for chemically nonequilibrium flows

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of gas dynamics, species conservation, and turbulence equations is integrated with the implicit lower-upper symmetric Gauss-Seidel (LU-SGS) method in the streamwise direction in a space marching manner. The AUSMPW+ scheme is used to calculate the inviscid fluxes in the crossflow direction, while the conventional central scheme for the viscous fluxes. The k-g two-equation turbulence model is used. The revised SSPNS code is validated by computing the Burrows-Kurkov non-premixed H2/air supersonic combustion flows, premixed H2/air hypersonic combustion flows in a three-dimensional duct with a 15° compression ramp, as well as the hypersonic laminar chemically nonequilibrium air flows around two 10° half-angle cones. The results of these calculations are in good agreement with those of experiments, NASA UPS or Prabhu’s PNS codes. It can be concluded that the SSPNS code is highly efficient for steady supersonic/hypersonic chemically reaction flows when there is no large streamwise separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gnoffo, P. A., Welmuenster, K. J., Hamilton, II H. H., et al.: Computational aerothermodynamic design issues for hypersonic vehicles. J. Spacecraft Rockets 36, 21–43 (1999)

    Article  Google Scholar 

  2. Gnoffo, P. A., Inger, G. R.: Analytic corrections to computational heating predictions accounting for changes in surface catalysis. J. Spacecraft Rockets 35, 417–423 (1998)

    Article  Google Scholar 

  3. Kim, K. H., Kim, C., Rho, O. H.: Methods for the accurate computations of hypersonic flows I. AUSMPW+ scheme. J. Comput. Phys. 174, 38–80 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sinha, K.: Computational fluid dynamics in hypersonic aerothermodynamics. Defense Science J. 60, 663–671 (2010)

    Google Scholar 

  5. Candler, G. V., Nompelis I.: CFD validation for hypersonic flight: real gas flows. AIAA Paper 2002-0434 (2002)

  6. Chen, B., Xu, X., Cai, G.: A space-marching algorithm for solving the parabolized Navier-Stokes equations. Chinese J. Theoretical and Applied Mechanics 40, 161–170 (2008) (in Chinese)

    Google Scholar 

  7. Yang, P., Chen, B., Xu, X.: Study on the reliability of a single-sweep space marching algorithm for hypersonic flows. J. Aerospace Power 24, 2452–2458 (2009) (in Chinese)

    Google Scholar 

  8. Chen, B., Xu, X., Cai, G.: Optimization design of single-expansion-ramp nozzles using genetic algorithms based on a parabolized Navier-Stokes solver. Acta Aeronautica et Astronautica Sinica 28, 827–832 (2007) (in Chinese)

    MATH  Google Scholar 

  9. Gao, Z.: Interacting shear flow (ISF) theory, diffusion parabolized Navier-Stokes DPNS) equations and wall surface criteria and their applications. Chinese Mechanics Digest 21, 13–22 (2007) (in Chinese)

    Google Scholar 

  10. Gao, Z.: Interacting shear flows (ISF) and boundary layer flows and application of ISF theory to compuataional fluid dynamics. Advances in Mechanics 38, 114–116 (2008) (in Chinese)

    Google Scholar 

  11. Anderson, J. D.: Hypersonic and High-Temperature Gas Dynamics. AIAA Education Series Mcgraw-Hill College, USA (2006)

    Book  Google Scholar 

  12. Liu, T., Wang, R., Song, S.: An implicit-explicit upwind algorithm for the parabolized Navier-Stokes equations. Acta Mechanica Sinica 10, 129–135 (1994)

    Article  MATH  Google Scholar 

  13. Shanks, S. P., Srinivasan, G. R., Nicolet, W. E.: AFWAL parabolized Navier-Stokes code: Formulation and user’s manual. AFWAL TR-82-3034 (1982)

  14. Lawrence, S. L., Tannehill, J. C., Chaussee, J. C.: An upwind algorithm for the parabolized Navier-Stokes equations. AIAA Paper 86-1117 (1986)

  15. Prince, S. A., Williams, M. J., Edwards J. A.: Application of a parabolized Navier-Stokes solver to some problems in hypersonic propulsion aerodynamics. AIAA Paper 2001-4066 (2001)

  16. Moschetta, J. M., Lafon, A., Deniau, H.: Numerical investigation of supersonic vertical flow about a missile body. J. Spacecraft Rockets 32, 765–770 (1995)

    Article  Google Scholar 

  17. Wadawadigi, G., Tannehill, J. C., Buelow, P. E., et al.: Threedimensional upwind parabolized Navier-Stokes code for supersonic combustion flowfields. J. Thermophysics and Heat Transfer 7, 661–667 (1993)

    Article  Google Scholar 

  18. Buelow, P., Tannehill, J., Ievalts, J., et al.: A three-dimensional upwind parabolzied Navier-Stokes code for chemically reacting flows. AIAA Paper 90-0394 (1990)

  19. Prabhu, D. K., Tannehill, J. C., Marvin, J. G.: A new PNS code for chemically nonequilibrium flows. AIAA J. 26, 808–815 (1988)

    Article  MATH  Google Scholar 

  20. Kato, H., Tannehill, J. C., Gupta, S., et al.: Numerical simulation of 3-D supersonic viscous flow in an experimental MHD channel. AIAA Paper 2004-0317 (2004)

  21. Thivet, F.: The exact Jacobian associated with steady PNS equations and its use to define new numerical schemes. In: Proceedings of the Sixteenth International Conference on Numerical Methods in Fluid Dynamics, Arcachon, France, 320–325 (1998)

  22. Jameson, A., Yoon, S.: Lower-upper implicit scheme with multiple grids for the Euler equations. AIAA J. 25, 929–935 (1987)

    Article  Google Scholar 

  23. Burrows, M. C., Kurkov, A. P.: Analytical and experimental study of supersonic combustion of hydrogen in a vitiated airstream. NASA TM X-2828 (1973)

  24. Pitsch, H., Seiser, R., Varatharajan, B.: A guide to FlameMaster 3. 3. http://www.stanford.edu/group/pitsch/CES.htm

  25. Kalitzin, G., Gould, A. R. B., Benton, J. J.: Application of two-equation turbulence models in aircraft design. AIAA Paper 96-0327 (1996)

  26. Liou, M. S., Steffen, C. J.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. van Leer, B.: Towards the ultimate conservative difference scheme V. A second-order sequel to Godunovs method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  28. Krist, S. L., Biedron, R. T., Rumsey, C. L.: CFL3D User’s Manual, version 5. 0. NASA TM-1998-208444 (1998)

  29. Gupta, R. N., Yos, J. M., Thompson, R. A., et al.: A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K. NASA RP-1232 (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Chen.

Additional information

The project was supported by the National Natural Science Foundation of China (51176003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Wang, L. & Xu, X. An implicit upwind parabolized Navier-Stokes code for chemically nonequilibrium flows. Acta Mech Sin 29, 36–47 (2013). https://doi.org/10.1007/s10409-012-0211-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0211-7

Keywords

Navigation