Skip to main content
Log in

Linear instability of the electrified free interface between two cylindrical shells of viscoelastic fluids through porous media

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, we have discussed the linear stability analysis of the electrified surface separating two coaxial Oldroyd-B fluid layers confined between two impermeable rigid cylinders in the presence of both interfacial insoluble surfactant and surface charge through porous media. The case of long waves interfacial stability has been studied. The dispersion relation is solved numerically and hence the effects of various parameters are illustrated graphically. Our results reveal that the influence of the physicochemical parameter β is to shrink the instability region of the surface and reduce the growth rate of the unstable normal modes. Such important effects of the surfactant on the shape of interfacial structures are more sensitive to the variation of the β corresponding to non-Newtonian fluids-model compared with the Newtonian fluids model. In the case of long wave limit, it is demonstrated that increasing β, has a dual role in-fluence (de-stabilizing effects) depending on the viscosity of the core fluid. It has a destabilizing effect at the large values of the core fluid viscosity coefficient, while this role is exchanged to a regularly stabilizing influence at small values of such coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(·) j or (·)(j) j :

1 represents a quantity referred to Fluid 1 (inner layer), j = 2 denotes a quantity of Fluid 2 (outer layer)

r :

coordinate transverse to the cylinder surface

z :

coordinate along the cylinder surface

t :

time

p :

fluid pressure

ρ j :

density of the fluid

ρ :

ratio of ρ 2 to ρ 1

µ j :

dynamic viscosity of the inner fluid

µ:

ratio of µ2 to µ1

λ (j)1 :

relaxation time of the fluid

λ (j)2 :

retardation time of the fluid

R (j) :

flow resistance offered by the solid matrix in porous media

Re :

Reynolds number

φ j :

porosity of the medium occupied by the fluid

κ j :

permeability of the porous medium occupied by the fluid

χ j :

permeability parameter of the medium occupied by the fluid

u (j), ν (j) :

velocity components along r and z directions, respectively

τ 0 :

unperturbed-state surface tension

τ :

interfacial surface tension coefficient

τ c :

surface tension of a clean surface interface

Γ :

local surfactant concentration

Γ0 :

unperturbed surfactant concentration

D s :

surfactant diffusivity

R :

ideal gas constant

\(\tilde T\) :

absolute temperature

β :

physicochemical parameter

S mn :

viscoelastic stress tensor of the fluid

k :

wave number of the disturbance

c :

complex wave celerity

η :

interfacial displacement

\(\hat \eta\) :

complex amplitude of the interfacial perturbation

Ψ (j) :

stream function of the fluid

ɛ :

small dimensionless parameter

E (j) :

electric field strength vector

φ (j) :

electric potential function

ε j :

electric permittivity of the fluid

ε :

ratio of ε 2 to ε1

q :

area free charge density on the interface

σ j :

electric conductivity of the fluid

References

  1. Yap, D. Y., Gaver, D. P.: The influence of surfactant on two-phase flow in a flexible-walled channel under bulk equilibrium conditions. Phys. Fluids 10, 1846–1863 (1998)

    Article  Google Scholar 

  2. Quere, D.: Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31, 347–384 (1999)

    Article  Google Scholar 

  3. Kwak, S., Pozrikidis, C.: Effect of surfactants on the instability of a liquid thread of annular layer. Part I: Quiescent fluids. Int. Multiphase Flow 27, 1–37 (2001)

    Article  MATH  Google Scholar 

  4. Liu, Z. H., Liu, Z. B.: Instability of a viscoelastic liquid jet with axisymmetric and asymmetric disturbances. Int. Multiphase Flow 34, 42–60 (2008)

    Article  Google Scholar 

  5. Otis, D. R., Jonhson, J. M., Pedley, T. J.: Role of pulmonary surfactant in airway closure: A computational study. J. Appl Physiol. 75, 1323–1333 (1993)

    Google Scholar 

  6. Cassidy, K. J., Halpern, D., Ressler, B. G.: Surfactant effects in model airway closure experiments. J. Appl Physiol. 87, 415–427 (1999)

    Google Scholar 

  7. Frenkel, A. L., Halpern, D.: Stokes-flow instability due to interfacial surfactant. Phys. Fluids 14, 45–48 (2002)

    Article  Google Scholar 

  8. Halpern, D., Frenkel, A. L.: Destabilization of a creeping flow by interfacial surfactant: Linear theory extended to all wavenumbers. J. Fluid Mech. 485, 191–220 (2003)

    Article  MATH  Google Scholar 

  9. Blyth, M. G., Luo, H., Pozrikidis, C.: Stability of axisymmetric-core annular flow in the presence of an insoluble surfactant. J. Fluid Mech. 548, 207–235 (2006)

    Article  MathSciNet  Google Scholar 

  10. Alves, M. A., Oliveira, P. J., Pinho, F. T.: Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions. J. Non-Newtonian Fluid Mech. 110, 45–75 (2003)

    Article  MATH  Google Scholar 

  11. Lozinski, A., Owens, R. G.: An energy estimate for the Oldroyd-B model: theory and applications. J. Non-Newtonian Fluid Mech. 112, 161–176 (2003)

    Article  MATH  Google Scholar 

  12. Khan, M., Saleem, M., Fetecau, C. et al., Transient oscillatory and constantly accelerated non-Newtonian flow in a porous medium. Int. J. of Non-Linear Mech. 42, 1224–1239 (2007)

    Article  MATH  Google Scholar 

  13. Tan, W. C., Masuoka, T.: Stokes first problem for an Oldroyd-B fluid in a porous half space. Phys. Fluids 17, 023101–023107 (2005)

    Article  MathSciNet  Google Scholar 

  14. Taylor, G. I., McEwan, A. D.: The stability of a horizontal fluid interface in a vertical electric field. J.Fluid Mech. 22, 1–15 (1965)

    Article  MATH  Google Scholar 

  15. Melcher, J. R., Smith, C. V.: Electrohydrodynamic charge relaxation and interfacial perpendicular-field instability. Phys. Fluids 12, 778–790 (1969)

    Article  Google Scholar 

  16. Saville, D. A.: Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Ann. Rev. Fluid Mech. 29, 27–64 (1997)

    Article  MathSciNet  Google Scholar 

  17. Tomar, G., Shankar, V., Sharma, A., et al. Electrohydrodynamic instability of a confined viscoelastic liquid film. J. Non- Newtonian Fluid Mech. 143, 120–130 (2007)

    Article  MATH  Google Scholar 

  18. Reddy, M. N., Esmaeeli, A.: The EHD-driven fluid flow and deformation of a liquid jet by a transverse electric field. Int. J. Multiphase Flow, 35, 1051–1065 (2009)

    Article  Google Scholar 

  19. Goren, S. L.: The instability of an annular layer thread of liquid. J. Fluid Mech. 12, 309–319 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, F., Yin, X. Y., Yin, X. Z.: Instability analysis of an inner-driving coaxial jet inside a coaxial electrode for the nonequipotential case. J. Electrostatics 66, 58–70 (2008)

    Article  Google Scholar 

  21. Casanellas, L., Ortin, J.: Oscillatory flow of Maxwell and oldroyd-B fluids: Theoretical analysis. J. Non-Newtonian Fluid Mech. 166, 1315–1326 (2011)

    Article  Google Scholar 

  22. Matar, O. K., Lawrence, C. J.: The flow of a thin conducting film over a spinning disc in the presence of an electric field. Chemical Engineering Science 61, 3838–3849 (2006)

    Article  Google Scholar 

  23. Pease, L. F., Russel, W. B.: Linear stability analysis of thin leaky dielectric films subjected to electric fields. J. Non- Newtonian Fluid Mech. 102, 233–250 (2002)

    Article  MATH  Google Scholar 

  24. Fu, J. N., Tan, W.: Stability of thermal convection of an Oldroyd-B fluid in a porous medium with Newtonian heating. Phys. Lett. A 374, 4607–4613 (2010)

    Article  MATH  Google Scholar 

  25. Zakaria, K., Sirwah, M. A., Alkharashi, S. A.: Stability behavior of the three non-Newtonian magnetic fluids in porous media. Comm. Math. Sci. 9(3), 767–796 (2011)

    MathSciNet  Google Scholar 

  26. Zhang, Z. Y., Fu, C. J., Tan, W. C.: Onset of oscillatory convection in a porous cylinder saturated with a viscoelastic fluid. Phys. Fluids 19, 098104 (2007)

    Article  Google Scholar 

  27. Fu, J. N., Tan, W.: Thermal convection of a viscoelastic fluid in an open-top porous layer heated from below. J. Non-Newtonian Fluid Mech. 165, 203–211 (2010)

    Article  Google Scholar 

  28. Wu, L., Chou, S. Y.: Electrohydrodynamic instability of a thin film of viscoelastic polymer underneath a lithographically manufactured mask. J. Non-Newtonian Fluid Mech. 125, 91–99 (2005)

    Article  MATH  Google Scholar 

  29. Shankar, V., Sharma, A.: Instability of the interface between thin fluid films subjected to electric fields. J. Colloid Interface Sci. 274, 294–308 (2004)

    Article  Google Scholar 

  30. Zakaria, K., Sirwah, M. A., Assaf, A.: Nonlinear Marangoni instability of a liquid jet in the presence of electric field. Z. Angew Math. Mech. (ZAMM) 89, 902–921 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wei, H. H., Rumschitzki, D. S.: The effects of insoluble surfactants on the linear stability of a core-annular flow. J. Fluid Mech. 541, 115–142 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Adamson, A. W.: Physical chemistry of surfaces. Wiley, New York (1982)

    Google Scholar 

  33. Boyd, J. P.: Chebyshev and Fourier spectral methods. Dover Publications. Inc., Mineola, NY (2001)

    MATH  Google Scholar 

  34. Goldin, M., Yerushalmi, J., Pfeffer, R., et al.: Breakup of a laminar capillary jet of a viscoelastic fluid. J. Fluid Mech. 38, 689–711 (1969)

    Article  Google Scholar 

  35. Liu, Z., Brenn, G., Durst, F.: Linear analysis of the instability of two-dimensional non-Newtonian liquid sheets. J. Non- Newtonian Fluid Mech. 78, 133–166 (1998)

    Article  MATH  Google Scholar 

  36. Smith, M. K.: The long-wave instability in heated or cooled inclined liquid layers. J. Fluid Mech. 219, 337–360 (1990)

    Article  MATH  Google Scholar 

  37. Sadiq, I., Usha, R.: Linear instability in a thin viscoelastic liquid film on an inclined, non-uniformly heated wall. Int. J. Eng. Science 43, 1435–1449 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ozen, O., Aubry, N., Papageorgiou, D. T., et al.: Electrohydrodynamic linear stability of two immiscible fluids in channel flow. Electrochimica Acta 51, 5316–5323 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy A. Sirwah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirwah, M.A. Linear instability of the electrified free interface between two cylindrical shells of viscoelastic fluids through porous media. Acta Mech Sin 28, 1572–1589 (2012). https://doi.org/10.1007/s10409-012-0208-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0208-2

Keywords

Navigation