Skip to main content
Log in

In situ investigation of the mechanical properties of nanomaterials by transmission electron microscopy

  • Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

With the progress of modern transmission electron microscopy (TEM) and development of dedicated functional TEM specimen holders, people can now manipulate a nano-object with nanometer-range precision and simultaneously acquire mechanical data together with atomic-scale structural information. This advanced methodology is playing an increasingly important role in nanomechanics. The present review summarizes relevant studies on the in situ investigation of mechanical properties of various nanomaterials over the past decades. These works enrich our knowledge not only on nanomaterials (such as carbon nanotubes, carbon onions, boron nitride nanotubes, silicon nanowires and graphene, etc.) but also on mechanics at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Gennes, P.G.: Soft matter. Rev. Mod. Phys. 64, 645–648 (1992)

    Article  Google Scholar 

  2. Banhart, F.: Irradiation effects in carbon nanostructures. Rep. Progr. Phys. 62, 1181–1221 (1999)

    Article  Google Scholar 

  3. Kotakoski, J., Krasheninnikov, A.V., Nordlund, K.: Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: Atomistic simulations. Phys. Rev. B 74, 245420 (2006)

    Article  Google Scholar 

  4. Krasheninnikov, A.V., Banhart, F.: Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 6, 723–733 (2007)

    Article  Google Scholar 

  5. Ugarte, D.: Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992)

    Article  Google Scholar 

  6. Banhart, F., Füller, T., Redlich, P., et al.: The formation, annealing and self-compression of carbon onions under electron irradiation. Chem. Phys. Lett. 269, 349–355 (1997)

    Article  Google Scholar 

  7. Akatyeva, E., Huang, J., Dumitrica, T.: Edge-mediated dislocation processes in multishell carbon nano-onions. Phys. Rev. Lett. 105, 106102 (2010)

    Article  Google Scholar 

  8. Banhart, F., Ajayan, P.: Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382, 433–435 (1996)

    Article  Google Scholar 

  9. Banhart, F.: The transformation of graphitic onions to diamond under electron irradiation. J. Appl. Phys. 81, 3440–3445 (1997)

    Article  Google Scholar 

  10. Zaiser, M., Banhart, F.: Radiation-induced transformation of graphite to diamond. Phys. Rev. Lett. 79, 3680–3683 (1997)

    Article  Google Scholar 

  11. Lyutovich, Y., Banhart, F.: Low-pressure transformation of graphite to diamond under irradiation. Appl. Phys. Lett. 74, 659–660 (1999)

    Article  Google Scholar 

  12. Guo, W.L., Zhu, C.Z., Yu, T.X., et al.: Formation of sp 3 bonding in nanoindented carbon nanotubes and graphite. Phys. Rev. Lett. 93, 245502 (2004)

    Article  Google Scholar 

  13. Guo, Y.F., Guo, W.L.: Reassembly of single-walled carbon nanotubes into hybrid multilayered nanostructures inside nanotube extruders. Phys. Rev. B 76, 045404 (2007)

    Article  Google Scholar 

  14. Sun, L., Rodríguez-Manzo, J.A., Banhart, F.: Elastic deformation of nanometer-sized metal crystals in graphitic shells. Appl. Phys. Lett. 89, 263104 (2006)

    Article  Google Scholar 

  15. Li, J., Banhart, F.: The deformation of single, nanometer-sized metal crystals in graphitic shells. Adv. Mater. 17, 1539–1542 (2005)

    Article  Google Scholar 

  16. Banhart, F., Charlier, J.C., Ajayan, P.: Dynamic behavior of nickel atoms in graphitic networks. Phys. Rev. Lett. 84, 686–689 (2000)

    Article  Google Scholar 

  17. Banhart, F., Redlich, P., Ajayan, P.: The migration of metal atoms through carbon onions. Chem. Phys. Lett. 292, 554–560 (1998)

    Article  Google Scholar 

  18. Sun, L., Krasheninnikov, A.V., Ahlgren, T., et al.: Plastic deformation of single nanometer-sized crystals. Phys. Rev. Lett. 101, 156101 (2008)

    Article  Google Scholar 

  19. Suresh, S., Li, J.: Deformation of the ultra-strong. Nature 456, 716–717 (2008)

    Article  Google Scholar 

  20. Sun, L., Banhart, F., Krasheninnikov, A.V., et al.: Carbon nanotubes as high-pressure cylinders and nanoextruders. Science 312, 1199–1202 (2006)

    Article  Google Scholar 

  21. Rodríguez-Manzo, J.A., Terrones, M., Terrones, H., et al.: In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nat. Nanotech. 2, 307–311 (2007)

    Article  Google Scholar 

  22. Wang, Z., Zhao, Y.: Materials science: high-pressure microscopy. Science 312, 1149–1150 (2006)

    Article  Google Scholar 

  23. Ma, M., Liu, J., Wang, L., et al.: Reversible high-pressure carbon nanotube vessel. Phys. Rev. B. 81, 235420 (2010)

    Article  Google Scholar 

  24. Poncharal, P., Wang, Z., Ugarte, D., et al.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  25. Zhu, Y., Espinosa, H.D.: An electromechanical material testing system for in situ electron microscopy and applications. Proc. Natl. Acad. Sci. 102, 14503–14508 (2005)

    Article  Google Scholar 

  26. Peng, B., Locascio, M., Zapol, P., et al.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotech. 3, 626–631 (2008)

    Article  Google Scholar 

  27. Santo Pietro, D., Tang, C., Chen, C.: Enhancing interwall load transfer by vacancy defects in carbon nanotubes. Appl. Phys. Lett. 100, 033118 (2012)

    Article  Google Scholar 

  28. Golberg, D., Costa, P.M., Wang, M.S., et al.: Nanomaterial engineering and property studies in a transmission electron microscope. Adv. Mater. 24, 177–194 (2012)

    Article  Google Scholar 

  29. Cumings, J., Collins, P.G., Zettl, A.: Peeling and sharpening multiwall nanotubes. Nature 406, 586 (2000)

    Article  Google Scholar 

  30. Tang, C., Guo, W.L., Chen, C.F.: Mechanism for superelongation of carbon nanotubes at high temperatures. Phys. Rev. Lett. 100, 175501 (2008)

    Article  Google Scholar 

  31. Wang, M.S., Golberg, D., Bando, Y.: Tensile tests on individual single-walled carbon nanotubes: Linking nanotube strength with its defects. Adv. Mater. 22, 4071–4075 (2010)

    Article  Google Scholar 

  32. Wang, M.S., Golberg, D., Bando, Y.: Interface dynamic behavior between a carbon nanotube and metal electrode. Adv. Mater. 22, 93–98 (2010)

    Article  Google Scholar 

  33. Wang, M.S., Golberg, D., Bando, Y.: Superstrong low-resistant carbon nanotube-carbide-metal nanocontacts. Adv. Mater. 22, 5350–5355 (2010)

    Article  Google Scholar 

  34. Wang, M.S., Bando, Y., Rodríguez-Manzo, J.A., et al.: Cobalt nanoparticle-assisted engineering of multiwall carbon nanotubes. ACS Nano 3, 2632–2638 (2009)

    Article  Google Scholar 

  35. Rodríguez-Manzo, J.A., Wang, M.S., Banhart, F., et al.: Multibranched junctions of carbon nanotubes via cobalt particles. Adv. Mater. 21, 4477–4482 (2009)

    Article  Google Scholar 

  36. Rodríguez-Manzo, J.A., Banhart, F., Terrones, M., et al.: Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. Proc. Natl. Acad. Sci. 106, 4591–4595 (2009)

    Article  Google Scholar 

  37. Banhart, F.: Interactions between metals and carbon nanotubes: at the interface between old and new materials. Nanoscale 1, 201–213 (2009)

    Article  Google Scholar 

  38. Borrnert, F., Barreiro, A., Wolf, D., et al.: Lattice expansion in seamless bilayer graphene constrictions at high bias. Nano Lett. 12, 4455–4459 (2012)

    Article  Google Scholar 

  39. Guo, W.L., Guo, Y.F.: Giant axial electrostrictive deformation in carbon nanotubes. Phys. Rev. Lett. 91, 115501 (2003)

    Article  Google Scholar 

  40. Golberg, D., Bando, Y., Huang, Y., et al.: Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010)

    Article  Google Scholar 

  41. Golberg, D., Bando, Y., Tang, C.C., et al.: Boron nitride nanotubes. Adv. Mater. 19, 2413–2432 (2007)

    Article  Google Scholar 

  42. Wei, X., Wang, M.S., Bando, Y., et al.: Tensile tests on individual multi-walled boron nitride nanotubes. Adv. Mater. 22, 4895–4899 (2010)

    Article  Google Scholar 

  43. Tang, D.M., Ren, C.L., Wei, X.L., et al.: Mechanical properties of bamboo-like boron nitride nanotubes by in situ TEM and MD simulations strengthening effect of interlocked joint interfaces. ACS Nano 5, 7362–7368 (2011)

    Article  Google Scholar 

  44. Wang, L.H., Han, X.D., Liu, P., et al.: In situ observation of dislocation behavior in nanometer grains. Phys. Rev. Lett. 105, 135501 (2010)

    Article  Google Scholar 

  45. Yue, Y.H., Liu, P., Deng, Q.S., et al.: Quantitative evidence of crossover toward partial dislocation mediated plasticity in copper single crystalline nanowires. Nano Lett. 12, 4045–4049 (2012)

    Article  Google Scholar 

  46. Wang, H.T., Nie, A.M., Liu, J.B., et al.: In situ TEM study on crack propagation in nanoscale Au thin films. Scripta Mater. 65, 377–379 (2011)

    Article  Google Scholar 

  47. Jensen, K., Mickelson, W., Kis, A., et al.: Buckling and kinking force measurements on individual multiwalled carbon nanotubes. Phys. Rev. B. 76, 195436 (2007)

    Article  Google Scholar 

  48. Chang, T.C., Guo, W.L., Guo, X.M.: Buckling of multiwalled carbon nanotubes under axial compression and bending via a molecular mechanics model. Phys. Rev. B 72, 064101 (2005)

    Article  Google Scholar 

  49. Wang, C.M., Zhang, Y.Y., Xiang, Y., et al.: Recent studies on buckling of carbon nanotubes. Appl. Mech. Rev. 63, 030804 (2010)

    Article  Google Scholar 

  50. Feliciano, J., Tang, C., Zhang, Y.Y., et al.: Aspect ratio dependent buckling mode transition in single-walled carbon nanotubes under compression. J. Appl. Phys. 109, 084323 (2011)

    Article  Google Scholar 

  51. Zhao, J., He, M.R., Dai, S., et al.: TEM observations of buckling and fracture modes for compressed thick multiwall carbon nanotubes. Carbon 49, 206–213 (2011)

    Article  Google Scholar 

  52. Zhao, J., Zhu, J.: Electron microscopy and in situ testing of mechanical deformation of carbon nanotubes. Micron 42, 663–679 (2011)

    Article  Google Scholar 

  53. Costa, P.M.F.J., Gautam, U.K., Bando, Y., et al.: The electrical delivery of a sublimable II-VI compound by vapor transport in carbon nanotubes. Carbon 49, 3747–3754 (2011)

    Article  Google Scholar 

  54. Nikiforov, I., Tang, D.M., Wei, X., et al.: Nanoscale bending of multilayered boron nitride and graphene ribbons: experiment and objective molecular dynamics calculations. Phys. Rev. Lett. 109, 025504 (2012)

    Article  Google Scholar 

  55. Golberg, D., Bai, X.D., Mitome, M., et al.: Structural peculiarities of in situ deformation of a multi-walled BN nanotube inside a high-resolution analytical transmission electron microscope. Acta Mater. 55, 1293–1298 (2007)

    Article  Google Scholar 

  56. He, L.B., Xu, T., Sun, J., et al.: Investment casting of carbon tubular structures. Carbon 50, 2845–2852 (2012)

    Article  Google Scholar 

  57. Han, X.D., Zheng, K., Zhang, Y.F., et al.: Low-temperature in situ large strain plasticity of silicon nanowires. Adv. Mater. 19, 2112–2118 (2007)

    Article  Google Scholar 

  58. Han, X.D., Zhang, Y.F., Zheng, K., et al.: Low-temperature in situ large strain plasticity of ceremic SiC nanowires and its atomic-scale mechanism. Nano Lett. 7, 452–457 (2007)

    Article  Google Scholar 

  59. Zheng, K., Han, X.D., Wang, L.H., et al.: Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 9, 2471–2476 (2009)

    Article  Google Scholar 

  60. Wang, L.H., Zheng, K., Zhang, Z., et al.: Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. Nano Lett. 11, 2382–2385 (2011)

    Article  Google Scholar 

  61. Dai, S., Zhao, J., Xie, L., et al.: Electron-beam-induced elastic-plastic transition in Si nanowires. Nano Lett. 12, 2379–2385 (2012)

    Article  Google Scholar 

  62. Zheng, K., Wang, C.C., Cheng, Y.Q., et al.: Electron-beam-assisted superplastic shaping of nanoscale amorphous silica. Nat. Commun. 1, 24 (2010)

    Google Scholar 

  63. Shan, Z.W., Mishra, R.K., Asif, S.A.S., et al.: Mechanical annealing and source-limited deformation in submicrometer-diameter Ni crystals. Nat. Mater. 7, 115–119 (2008)

    Article  Google Scholar 

  64. Yu, Q., Shan, Z.W., Li, J., et al.: Strong crystal size effect on deformation twinning. Nature 463, 335–338 (2010)

    Article  Google Scholar 

  65. Huang, L., Li, Q.J., Shan, Z.W., et al.: A new regime for mechanical annealing and strong sample-size strengthening in body centred cubicmolybdenum. Nat. Commun. 2, 547 (2011)

    Article  Google Scholar 

  66. Tian, L., Cheng, Y.Q., Shan, Z.W., et al.: Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 3, 609 (2012)

    Article  Google Scholar 

  67. Hall, A.R., Falvo, M.R., Superfine, R., et al.: Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device. Nat. Nanotech. 2, 413–416 (2007)

    Article  Google Scholar 

  68. Hall, A.R., An, L., Liu, J., et al.: Experimental measurement of single-wall carbon nanotube torsional properties. Phys. Rev. Lett. 96, 256102 (2006)

    Article  Google Scholar 

  69. Lin, L., Cui, T., Qin, L.C., et al.: Direct measurement of the friction between and shear moduli of shells of carbon nanotubes. Phys. Rev. Lett. 107, 206101 (2011)

    Article  Google Scholar 

  70. Senga, R., Hirahara, K., Nakayama, Y.: Nanotorsional actuator using transition between flattened and tubular states in carbon nanotubes. Appl. Phys. Lett. 100, 083110 (2012)

    Article  Google Scholar 

  71. Senga, R., Hirahara, K., Yamaguchi, Y., et al.: Carbon nanotube torsional actuator based on transition between flattened and tubular states. J. Non-Cryst. Solids. 358, 2541–2544 (2012)

    Article  Google Scholar 

  72. Chang, T.C.: Dominoes in carbon nanotubes. Phys. Rev. Lett. 101, 175501 (2008)

    Article  Google Scholar 

  73. Chang, T.C., Guo, Z.R.: Temperature-induced reversible dominoes in carbon nanotubes. Nano Lett. 10, 3490–3493 (2010)

    Article  Google Scholar 

  74. Wang, X.F., Xu, Z.J., Zhu, Z.Y.: Reversible mechanical bistability of carbon nanotubes under radial compression. Chem. Phys. Lett. 334, 144–147 (2007)

    Google Scholar 

  75. Chang, T.C., Hou, J., Guo, X.M.: Reversible mechanical bistability of single walled carbon nanotubes under axial strain. Appl. Phys. Lett. 88, 211906 (2006)

    Article  Google Scholar 

  76. Zewail, A.H.: Four-dimensional electron microscopy. Science 328, 187–193 (2010)

    Article  Google Scholar 

  77. Yurtsever, A., Van der Veen, R.M., Zewail, A.H.: Subparticle ultrafast spectrum imaging in 4D electron microscopy. Science 335, 59–64 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Tao Sun.

Additional information

These authors contribute to the article equally

The project was supported by the National Basic Research Program of China (973) (2011CB707601 and 2009CB623702), the National Natural Science Foundation of China (51071044, 61274114, 61106055 and 21243011), and Gatan Scholarship for Excellence in Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Xu, F. & Sun, LT. In situ investigation of the mechanical properties of nanomaterials by transmission electron microscopy. Acta Mech Sin 28, 1513–1527 (2012). https://doi.org/10.1007/s10409-012-0167-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0167-7

Keywords

Navigation