Skip to main content
Log in

Simulations of thermal conductance across tilt grain boundaries in graphene

  • Rapid Communication
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Non-equilibrium molecular dynamics (MD) method was performed to simulate the thermal transportation process in graphene nanoribbons (GNRs). A convenient way was conceived to introduce tilt grain boundaries (GBs) into the graphene lattice by repetitive removing C atom rows along certain directions. Comprehensive MD simulations reveal that larger-angle GBs are effective thermal barriers and substantially reduce the average thermal conductivity of GNRs. The GB thermal conductivity is ∼10W·m−1·K−1 for a bicrystal GNR with amisorientation of 21.8°, which is ∼97% less than that of a prefect GNR with the same size. The total thermal resistance has a monotonic dependence on the density of the 5–7 defects along the GBs. A theoretical model is proposed to capture this relation and resolve the contributions by both the reduction in the phonon mean free path and the defect-induced thermal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Schaller, R.R.: Moore’s law: Past, present and future. Spectrum, IEEE 34, 52–59 (1997)

    Article  Google Scholar 

  2. Meindl, J.D.: Ultra-large scale integration. IEEE Trans. Electron Devices 31, 1555–1561 (1984)

    Article  Google Scholar 

  3. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  4. Avouris, P.: Graphene: Electronic and photonic properties and devices. Nano Letters 10, 4285–4294 (2010)

    Article  Google Scholar 

  5. Bolotin, K.I., Sikes, K.J., Jiang, Z., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Communications 146, 351–355 (2008)

    Article  Google Scholar 

  6. Balandin, A.A., Ghosh, S., Bao, W.Z., et al.: Superior thermal conductivity of single-layer graphene. Nano Letters 8, 902–907 (2008)

    Article  Google Scholar 

  7. Wang, Z.Q., Xie, R.G., Bui, C.T., et al.: Thermal transport in suspended and supported few-layer graphene. Nano Letters 11, 113–118 (2011)

    Article  Google Scholar 

  8. Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., et al.: 100 GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010)

    Article  Google Scholar 

  9. Lin, Y.M., Valdes-Garcia, A., Han, S.J., et al.: Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011)

    Article  Google Scholar 

  10. Bae, S., Kim, H., Lee, Y., et al.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nano 5, 574–578 (2010)

    Article  Google Scholar 

  11. Li, X.S., Cai, W.W., An, J.H., et al.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  Google Scholar 

  12. Prasher, R.: Graphene spreads the heat. Science 328, 185–186 (2010)

    Article  Google Scholar 

  13. Li, X.S., Magnuson, C.W., Venugopal, A., et al.: Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Letters 10, 4328–4334 (2010)

    Article  Google Scholar 

  14. Tersoff, J.: Empirical interatomic potential for carbon, with applications to amorphous carbon. Physical Review Letters 61, 2879–2882 (1988)

    Article  Google Scholar 

  15. Schelling, P.K., Phillpot, S.R., Keblinski, P.: Comparison of atomic-level simulation methods for computing thermal conductivity. Physical Review B 65, 144306 (2002)

    Article  Google Scholar 

  16. Hu, J.N., Schiffli, S., Vallabhaneni, A., et al.: Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: A molecular dynamics study. Applied Physics Letters 97, 133107 (2010)

    Article  Google Scholar 

  17. Wei, N., Xu, L.Q., Wang, H.Q., et al.: Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility. Nanotechnology 22, 133107 (2011)

    MathSciNet  Google Scholar 

  18. Zhong, W.R., Zhang, M.P., Ai, B.Q., et al.: Chirality and thickness-dependent thermal conductivity of few-layer graphene: A molecular dynamics study. Applied Physics Letters 98, 113107 (2011)

    Article  Google Scholar 

  19. Lu, Y., Guo, J.: Thermal transport in grain boundary of graphene by non-equilibrium Green’s function approach. Applied Physics Letters 101, 043112–043115 (2012)

    Article  Google Scholar 

  20. Bagri, A., Kim, S.P., Ruoff, R.S., et al.: Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Letters 11, 3917–3921 (2011)

    Article  Google Scholar 

  21. Prasher, R.: Predicting the thermal resistance of nanosized constrictions. Nano Letters 5, 2155–2159 (2005)

    Article  Google Scholar 

  22. Ghosh, S., Calizo, I., Teweldebrhan, D., et al.: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters 92, 151911 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Tao Wang.

Additional information

The project was supported by Science Foundation of Chinese University (2011QNA4038), Scientific Research Fund of Zhejiang Provincial Education Department (Z200906194) and Science and Technology Innovative Research Team of Zhejiang Province (2009R50010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Gong, B., Feng, Q. et al. Simulations of thermal conductance across tilt grain boundaries in graphene. Acta Mech Sin 28, 1528–1531 (2012). https://doi.org/10.1007/s10409-012-0166-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0166-8

Keywords

Navigation