Skip to main content
Log in

Breakup of spherical vesicles caused by spontaneous curvature change

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We present our theoretical analysis and coarsegrained molecular dynamics (CGMD) simulation results to describe the mechanics of breakup of spherical vesicles driven by changes in spontaneous curvature. Systematic CGMD simulations reveal the phase diagrams for the breakup and show richness in breakup morphologies. A theoretical model based on Griffith fracture mechanics is developed and used to predict the breakup condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Helfrich, W.: Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch 28c, 693–703 (1973)

    Google Scholar 

  2. Sackmann, E., Duwe, H.P., Engelhardt, H.: Membrane bending elasticity and its role for shape fluctuations and shape transformations of cells and vesicles. Faraday Discussions 81, 281–290 (1986)

    Article  Google Scholar 

  3. Duwe, H.P., Käs, J., Sackmann, E.: Bending elastic-moduli of lipid bilayers—modulation by solutes. Journal de Physique 51, 945–962 (1990)

    Article  Google Scholar 

  4. Barziv, R., Moses, E.: Instability and pearling atates produced in tubular membranes by competition of curvature and tension. Phys. Rev. Lett. 73, 1392–1395 (1994)

    Article  Google Scholar 

  5. Wintz, W., Dobereiner, H.G., Seifert, U.: Starfish vesicles. Europhys. Lett. 33, 403–408 (1996)

    Article  Google Scholar 

  6. Lim, H.W.G., Wortis, M., Mukhopadhyay, R.: Stomatocytediscocyte-echinocyte sequence of the human red blood cell: Evidence for the bilayer-couple hypothesis from membrane mechanics. Proc. Natl. Acad. Sci. USA 99, 16766–16769 (2002)

    Article  Google Scholar 

  7. Seifert, U., Berndl, K., Lipowsky, R.: Shape transformations of vesicles—phase-diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A 44, 1182–1202 (1991)

    Article  Google Scholar 

  8. Gopal, A., Lee, K.Y.C.: Morphology and collapse transitions in binary phospholipid monolayers. J. Phys. Chem. B 105, 10348–10354 (2001)

    Article  Google Scholar 

  9. Lu, W., Knobler, C.M., Bruinsma, R.F., et al.: Folding Langmuir monolayers. Phys. Rev. Lett. 89, 146107 (2002)

    Article  Google Scholar 

  10. Diamant, H., Witten, T.A., Ege, C., et al.: Topography and instability of monolayers near domain boundaries. Phys. Rev. E 63, 061602 (2001)

    Article  Google Scholar 

  11. Noguchi, H.: Polyhedral vesicles: A Brownian dynamics simulation. Phys. Rev. E 67, 041901 (2003)

    Article  Google Scholar 

  12. Mashl, R.J., Bruinsma, R.F.: Spontaneous-curvature theory of clathrin-coated membranes. Biophys. J. 74, 2862–2875 (1998)

    Article  Google Scholar 

  13. Heuser, J.: Effects of cytoplasmic acidification on clathrin lattice morphology. J. Cell Biol. 108, 401–411 (1989)

    Article  Google Scholar 

  14. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon, New York (1970)

    Google Scholar 

  15. Liu, P., Li, J., Zhang, Y.W.: Pressure-temperature phase diagram for shapes of vesicles: A coarse-grained molecular dynamics study. Appl. Phys. Lett. 95, 143104 (2009)

    Article  Google Scholar 

  16. Beeman, D.: Some multistep methods for use in moleculardynamics calculations. J. Comput. Phys. 20, 130–139 (1976)

    Article  Google Scholar 

  17. Zheng, C., Liu, P., Li, J., et al.: Phase diagrams for multicomponent membrane vesicles: A coarse-grained modeling study. Langmuir 26, 12659–12666 (2010)

    Article  Google Scholar 

  18. Yuan, H.Y., Huang, C.J., Li, J., et al.: One-particlethick, solvent-free, coarse-grained model for biological and biomimetic fluid membranes. Phys. Rev. E 82, 011905 (2010)

    Article  Google Scholar 

  19. Miao, L., Seifert, U., Wortis, M., et al.: Budding transitions of fluid-bilayer vesicles-the effect of area-difference elasticity. Phys. Rev. E 49, 5389–5407 (1994)

    Article  Google Scholar 

  20. Sih, G.C., Paris, P.C., Erdogan, F.: Crack-tip, stress-intensity factors for plane extension and plate bending problems. J. Appl. Mech. 29, 306–312 (1962)

    Article  Google Scholar 

  21. Zimmerberg, J., Kozlov, M.M.: How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2006)

    Article  Google Scholar 

  22. Ford, M.G.J., Mills, I.G., Peter, B.J., et al.: Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Li, J. & Zhang, YW. Breakup of spherical vesicles caused by spontaneous curvature change. Acta Mech Sin 28, 1545–1550 (2012). https://doi.org/10.1007/s10409-012-0165-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0165-9

Keywords

Navigation