Skip to main content
Log in

Experimental study on mechanical properties of methane-hydrate-bearing sediments

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Mechanical properties of methane hydrate-bearing-sediments (MHBS) are basic parameters for safety analysis of hydrate exploration and exploitation. Young’s modulus, cohesion, and internal friction angle of hydrate-bearing sediments synthesized in laboratory, are investigated using tri-axial tests. Stress-strain curves and strength parameters are obtained and discussed for different compositions and different hydrate saturation, followed by empirical expressions related to the cohesion, internal friction angle, and modulus of MHBS. Almost all tested MHBS samples exhibit plastic failure. With the increase of total saturation of ice and methane hydrate (MH), the specimens’ internal friction angle decreases while the cohesion increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sloan, Jr. E. D.: Clathrate Hydrates of Natural Gases. Marcel Dekker Inc., New York (1998)

    Google Scholar 

  2. Kvenvolden, K. A.: Methane hydrate-A major reservoir of carbon in the shallow geosphere. Chem. Geol. 71, 41–45 (1988)

    Article  Google Scholar 

  3. Kvenvolden, K. A., Lorenson T. D.: The global occurrence of natural gas hydrate. Geophysical Monograph 124, 3–18 (2001)

    Article  Google Scholar 

  4. Koh, C. A.: Towards a fundamental understanding of natural gas hydrates. Chem. Soc. Rev. 31, 157–167 (2002)

    Article  Google Scholar 

  5. Clayton, C. R. I., Priest, J. A., Best, A. I.: The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand. Geotechnique 55, 423–434 (2005)

    Article  Google Scholar 

  6. Kvenvolden, K. A., Lorenson, T. D.: The global occurrence of natural gas hydrate. Geophysical Monograph 124, 3–18 (2001)

    Article  Google Scholar 

  7. Shine, K. P., Derwent, R. G., Wuebbles, D. J., et al.: Radiative forcing of climate. In: Climate Change, The IPCC Scientific Assessment, edited by Houghton, J. T., Jenkins, G. J., Ephraums, J. J., Cambridge University Press, New York, 41–68 (1990)

    Google Scholar 

  8. Xu, W., Germanovich, L. N.: Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach. J. Geophys. Res. 111, B01104 (2006)

    Article  Google Scholar 

  9. Sultan, N.: Comment on “Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach” by Wenyue Xu and Leonid N. Germanovich. J. Geophys. Res. Solid Earth 112, 78–84 (2007)

    Google Scholar 

  10. McIver, Richard, D.: Role of naturally occurring gas hydrate in sediment transport. American Association of Petroleum Geologists, Bulletin 66, 789–792 (1982)

    Google Scholar 

  11. Bugge, T., Befring, S., Belderson, R. H., et al.: A giant three-stage submarine slide off Norway. Geo-Marine Letters 7, 191–198 (1987)

    Article  Google Scholar 

  12. Driscoll, N. W., Weissel, J. K., Goff, J. A.: Potential for large scale submarine slope failure and tsunami generation along the US mid-Atlantic coast. Geology 28, 407–410 (2000)

    Article  Google Scholar 

  13. Bouriak, S., Vanmste, M., Saoutkine, A.: Inferred gas hydrates and clay diapers near the Storegga slide on the southern edge of the Vφring Plateau, off shore Norway. Marine Geology 163 125–148 (2000)

    Article  Google Scholar 

  14. Jung, W. Y., Peter, R. V.: Effects of bottom water warming and sea level rise on holocene hydrate dissociation and mass wasting along the Norwegian-Barents Continental Margin. Journal of Geophysical Research 109, B06104 (2004)

    Article  Google Scholar 

  15. Kayen, R. E., Lee, H. J.: Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort Sea margin. Mar. Geotechnol. 10, 125–141 (1991)

    Article  Google Scholar 

  16. Milkov, A. V.: World distribution of submarine mud volcanoes and associated gas hydrate. Marine Geol. 167, 29–42 (2000)

    Article  Google Scholar 

  17. Briaud, J. L., Chaouch, A.: Hydrate melting in soil around hot conductor. J. Geotech. Geoenvir. Eng. 123, 645–653 (1997)

    Article  Google Scholar 

  18. Chaouch, A., Briaud, J. L.: Post melting behavior of gas hydrates in soft Ocean sediments. OTC 8298 1–11 (1997)

    Google Scholar 

  19. Zhang, X. H., Lu, X. B., Li, Q. P., et al.: Thermally induced evolution of phase transformations in gas hydrate sediment. SCIENCE CHINA-Physics, Mechanics & Astronomy 53, 1530–1535 (2010)

    Article  Google Scholar 

  20. Brooks, J. M., Cox, B. H., Bryant, W. R., et al.: Association of gas hydrates and oil seepage in the gulf of Mexico. Organic Geochemistry 10, 221–234 (1986)

    Article  Google Scholar 

  21. Kwon, T. H., Cho, G. C., Santamarina, J. C.: Gas hydrate dissociation in sediments: pressure temperature evolution. Geochemistry Geophysics Geosystems 9, Q03019 (2008)

    Article  Google Scholar 

  22. Francisca, F., Yun, T. S., Ruppel, C., et al.: Geophysical and geotechnical properties of near sea-floor sediments in the northern gulf of Mexico gas hydrate province. Earth and Planetary Science Letters 237, 924–939 (2005)

    Article  Google Scholar 

  23. Wu, B. H., Zhang, G. X., Zhu, Y. H.: Progress of gas hydrate investigation in China offshore. Earth Science Frontiers 10, 177–189 (2003)

    Google Scholar 

  24. Guerin, G., Goldberg, D., Meltser, A.: Characterization of in situ elastic properties of gas hydrate-bearing sediments on the Blake Ridge. Journal of Geophysical Research 104, 17781–17795 (1999)

    Article  Google Scholar 

  25. Lee, M. W., Collett, T. S.: Elastic properties of gas hydrate-bearing sediments. Geophysics 66, 763–771 (2001)

    Google Scholar 

  26. Winters, W. J., Waite, W. F., Mason, D. H., et al.: Methane gas hydrate effect on sediment acoustic and strength properties. Journal of Petroleum Science and Engineering 56, 127–135 (2007)

    Article  Google Scholar 

  27. Winters, W. J., Pecher, I. A., Waite, W. F., et al.: Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. American Mineralogist 89, 1221–1227 (2004)

    Google Scholar 

  28. Hyodo, M., Nakata, Y., Yoshimoto, N., et al.: Shear behavior of methane hydrate-bearing sand. In: Proc. 17th Int. Offshore and Polar Eng. Conf., Lisbon, Portugal, 1326–1333 (2007)

  29. Masui, A., Haneda, H., Ogata, Y. et al.: Mechanical properties of sandy sediment containing marine gas hydrates in deep sea offshore Japan. In: Proc. 17th Int. Offshore and Polar Eng. Conf., Ocean Mining Symposium, Lisbon, Portugal, 53–56 (2007)

  30. Masui, A., Haneda, H., Ogata, Y., et al.: Effect of methane hydrate formation on shear strength of synthetic methane hydrate sediment. In: Proc. 15th Int. Offshore and Polar Eng. Conf., Seoul, Korea, 364–369 (2005)

  31. Wei, H. Z., Yan, R. T., Chen, P., et al.: Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different hydrate contents under tri-axial shear tests. Rock and Soil Mechanics 32(Supp. 2), 198–203 (2011)

    Google Scholar 

  32. Yun, T. S., Santamarina, J. C., Rupple, C.: Mechanical properties of sand, silt and clay containing tetrahydrofuran hydrate. Journal of Geophysical Research 112, B04106 (2007)

    Article  Google Scholar 

  33. Miyazaki, K., Masui, A., Sakamoto, Y., et al.: Triaxial compressive properties of artificial methane-hydrate-bearing-sediment. Journal of Geophysical Research 116, B06102, (2011)

    Article  Google Scholar 

  34. Llamedo, M., Anderson, R., Tohidi, B.: Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media. American Mineralogist 89, 1264–1270 (2004)

    Google Scholar 

  35. Turner, D., Sloan, E. D.: Hydrate phase equilibrium measurements and predictions in sediments. In: Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, Japan, 327–330 (2002)

  36. Huang, D. Z., Fan, S. S.: The promotion of methane hydrate formation in quiescent system. Chemistry 5, 379–384 (2005)

    Google Scholar 

  37. Freij-Ayoub, R., Tan, C., Clennel, B., et al.: A well-bore stability model for hydrate bearing sediment. J. Petro. Science Engrg. 57, 209–220 (2007)

    Article  Google Scholar 

  38. Helgerud, M. B., Dvorkin, J., Nur, A.: Rock physics characterization for gas hydrate reservoirs: elastic properties. Annals of the New York Academy of Sciences 9, 49–58 (2000)

    Google Scholar 

  39. Lee, M. W., Collett, T. S.: Elastic properties of gas hydratebearing sediments. Geophysics 66, 763–771 (2001)

    Google Scholar 

  40. Cox, J.: Natural Gas Hydrates: Properties, Occurrence and Recovery. Butterworth, Woburn, USA (1983)

    Google Scholar 

  41. Waite, W. F., Santamarina, J. C., Cortes, D. D., et al.: Physical properties of hydrate-bearing sediments. Reviews of Geophysics 47, 1–38 (2009)

    Article  Google Scholar 

  42. Aryanpour, G., Farzaneh, M.: Analysis of axial strain in one-dimensional loading by different models. Acta Mech. Sin. 26, 745–753 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Hui Zhang.

Additional information

The project was supported by the National Natural Science Foundation of China (11102209 and 11072245), the National High Technology Research and Development Program of China (863) and the Key Program of Chinese Academy of Sciences (KJCX2-YW-L02).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XH., Lu, XB., Zhang, LM. et al. Experimental study on mechanical properties of methane-hydrate-bearing sediments. Acta Mech Sin 28, 1356–1366 (2012). https://doi.org/10.1007/s10409-012-0142-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0142-3

Keywords

Navigation