Skip to main content
Log in

Adaptive thermo-fluid moving boundary computations for interfacial dynamics

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study, we present adaptive moving boundary computation technique with parallel implementation on a distributed memory multi-processor system for large scale thermo-fluid and interfacial flow computations. The solver utilizes Eulerian-Lagrangian method to track moving (Lagrangian) interfaces explicitly on the stationary (Eulerian) Cartesian grid where the flow fields are computed. We address the domain decomposition strategies of Eulerian-Lagrangian method by illustrating its intricate complexity of the computation involved on two different spaces interactively and consequently, and then propose a trade-off approach aiming for parallel scalability. Spatial domain decomposition is adopted for both Eulerian and Lagrangian domain due to easy load balancing and data locality for minimum communication between processors. In addition, parallel cell-based unstructured adaptive mesh refinement (AMR) technique is implemented for the flexible local refinement and even-distributed computational workload among processors. Selected cases are presented to highlight the computational capabilities, including Faraday type interfacial waves with capillary and gravitational forcing, flows around varied geometric configurations and induced by boundary conditions and/or body forces, and thermo-fluid dynamics with phase change. With the aid of the present techniques, large scale challenging moving boundary problems can be effectively addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sim, J., Shyy, W.: Interfacial flow computations using adaptive Eulerian-Lagrangian method for spacecraft applications. International Journal for Numerical Methods in Fluids 68, 1438–1456 (2012)

    Article  MATH  Google Scholar 

  2. Kuan, C. K., Sim, J., Shyy, W.: Parallel, adaptive grid computing of multiphase flows in spacecraft fuel tanks. 50th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA-2012-2761, Nashville, Tennessee (2012)

  3. Tseng, C.-C., Wei, Y., Wang, G., et al.: Modeling of turbulent, isothermal and cryogenic cavitation under attached conditions. Acta Mechanica Sinica 26, 325–353 (2010)

    Article  MathSciNet  Google Scholar 

  4. Shyy, W., Correa, S. M., Braaten, M. E.: Computation of flow in a gas turbine combustor. Combustion Science and Technology 58, 97–117 (1988)

    Article  Google Scholar 

  5. Shyy, W., Udaykumar, H. S., Rao, M. M., et al.: Computational fluid dynamics with moving boundaries. Taylor & Francis, Philadelphia (1996)

    Google Scholar 

  6. Prosperetti, A., Tryggvason, G.: Computational Methods for Multiphase Flow. Cambridge University Press, New York (2007)

    Book  Google Scholar 

  7. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  8. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  9. Peskin, C.S.: The immersed boundary method. Acta Numerica 11, 479–517 (2003)

    MathSciNet  Google Scholar 

  10. Tryggvason, G., Bunner, B., Esmaeeli, A., et al.: A fronttracking method for the computations of multiphase flow. Journal of Computational Physics 169, 708–759 (2001)

    Article  MATH  Google Scholar 

  11. Singh, R., Shyy, W.: Three-dimensional adaptive cartesian grid method with conservative interface restructuring and reconstruction. Journal of Computational Physics 224, 150–167 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mittal, R., Dong, H., Bozkurttas, M., et al.: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. Journal of Computational Physics 227, 4825–4852 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Uzgoren, E., Sim, J., Shyy, W.: Marker-based, 3-d adaptive cartesian grid method for multiphase flow around irregular geometries. Communications in Computational Physics 5, 1–41 (2009)

    MathSciNet  Google Scholar 

  14. Wu, P.: Parallel adaptive mesh generation and decomposition. Department of Computer Science, Purdue University (1995)

  15. Espostiongaro, T., Cavazzoni, C., Erbacci, G., et al.: A parallel multiphase flow code for the 3D simulation of explosive volcanic eruptions. Parallel Computing 33, 541–560 (2007)

    Article  MathSciNet  Google Scholar 

  16. Sussman, M.: A parallelized, adaptive algorithm for multiphase flows in general geometries. Computers & Structures 83, 435–444 (2005)

    Article  Google Scholar 

  17. Marella, S.V.: A parallelized sharp-interface fixed grid method for moving boundary problems. [Ph. D. Thesis] University of Iowa the U.S.A. (2006)

  18. Agbaglah, G., Delaux, S. E. B., Fuster, D., et al.: Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. Comptes Rendus Mecanique 339, 194–207

  19. Darmana, D., Deen, N. G., Kuipers, J. A. M.: Parallelization of an euler-lagrange model using mixed domain decomposition and a mirror domain technique: Application to dispersed gas-liquid two-phase flow. Journal of Computational Physics 220, 216–248 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Burstedde, C., Wilcox, L. C., Ghattas, O.: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing 33, 1103–1133 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Powell, K. G., Zeeuw, D. L. D., Sokolov, I. V., et al.: Parallel, AMR MHD for global space weather simulations. Space Weather The International Journal of Research and Applications. Berlin Heidelberg: Springer 41, 473–490 (2005)

    Google Scholar 

  22. Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics 53, 484–512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gunney, B. T. N., Wissink, A. M., Hysom, D. A.: Parallel clustering algorithms for structured amr. Journal of Parallel and Distributed Computing 66, 1419–1430 (2006)

    Article  MATH  Google Scholar 

  24. MacNeice, P., Olson, K. M., Mobarry, C., et al.: Paramesh: A parallel adaptive mesh refinement community toolkit. Computer Physics Communications 126, 330–354 (2000)

    Article  MATH  Google Scholar 

  25. Deiterding, R.: A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains. Computers Structures 87, 769–783 (2009)

    Article  Google Scholar 

  26. Jablonowski, C., Herzog, M., Penner, J. E., et al.: Block-structured adaptive grids on the sphere: Advection experiments. Menthly Weather Review 134, 3691–3713 (2006)

    Article  Google Scholar 

  27. Griffith, B. E., Hornung, R. D., McQueen, D. M., et al.: Parallel and Adaptive Simulation of Cardiac Fluid Dynamics: Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications. John Wiley and Sons. New York (2009)

  28. Zuzio, D., Estivalezes, J. L.: An efficient block parallel amr method for two phase interfacial flow simulations. Computers & Fluids 44, 339–357 (2011)

    Article  MathSciNet  Google Scholar 

  29. Kirk, B. S., Peterson, J. W., Stogner, R. H., et al.: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Engineering with Computers 22, 237–254 (2006)

    Article  Google Scholar 

  30. Lawlor, O. S., Chakravorty, S., Wilmarth, T. L., et al.: Parfum: A parallel framework for unstructured meshes for scalable dynamic physics applications. Engineering with Computers 22, 215–235 (2006)

    Article  Google Scholar 

  31. Uzgoren, E., Singh, R., Sim, J., et al.: Computational modeling for multiphase flows with spacecraft application. Progress in Aerospace Sciences 43, 138–192 (2007)

    Article  Google Scholar 

  32. Balay, S., Brown, J., Buschelman, K., et al.: http://www.mcs.anl.gov/petsc

  33. Falgout, R. D., Yang, U. M.: Hypre: A library of high performance preconditioners. Preconditioners, Lecture Notes in Computer Science, 632–641, (2002)

  34. Shyy, W., Chen, M. H., Sun, C. S.: Pressure-based multigrid algorithm for flow at all speeds. AIAA Journal 30, 2660–2669 (1992)

    Article  MATH  Google Scholar 

  35. Ye, T., Mittal, R., Udaykumar, H.S., et al.: An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries. Journal of Computational Physics 156, 209–240 (1999)

    Article  MATH  Google Scholar 

  36. Kim, J., Kim, D., Choi, H.: An immersed-boundary finite-volume method for simulations of flow in complex geometries. Journal of Computational Physics 171, 132–150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sim, J., Kuan, C. K., Shyy, W.: Simulation of spacecraft fuel tank self-pressurization using Eulerian-Lagrangian method. 49th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA-2011-1318, Orlando, FL (2011)

  38. Karypis, G., Kumar, V.: Metis: Unstructured graph partitioning and sparse matrix ordering system, version 4.0. http://www.cs.umn.edu/~metis

  39. Schamberger, S., Wierum, J. M.: Graph partitioning in scientific simulations: Multilevel schemes versus space-filling curves. Parallel Computing Technologies 2763, 165–179 (2003)

    Article  Google Scholar 

  40. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  41. Lhner, R.: Parallel unstructured grid generation. Computer Methods in Applied Mechanics and Engineering 95, 343–357 (1992)

    Article  Google Scholar 

  42. Davis, G. D. V.: Natural convection of air in a square cavity: A bench mark numerical solution. International Journal for Numerical Methods in Fluids 3, 249–264 (1983)

    Article  MATH  Google Scholar 

  43. Davis, G. D. V., Jones, I. P.: Natural convection in a square cavity: A comparison exercise. International Journal for Numerical Methods in Fluids 3, 227–248 (1983)

    Article  MATH  Google Scholar 

  44. Jany, P., Bejan, A.: Scaling theory of melting with natural convection in an enclosure. International Journal of Heat and Mass Transfer 31, 1221–1235 (1988)

    Article  Google Scholar 

  45. Bertrand, O., Binet, B., Combeau, H., et al.: Melting driven by natural convection a comparison exercise: First results. International Journal of Thermal Sciences 38, 5–26 (1999)

    Article  Google Scholar 

  46. Ghia, U., Ghia, K., Shin, C.: High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  47. Kan, H. C., Udaykumar, H. S., Shyy, W., et al.: Hydrodynamics of a compound drop with application to leukocyte modeling. Physics of Fluids 10, 760–774 (1998)

    Article  Google Scholar 

  48. Francois, M., Shyy, W.: Computations of drop dynamics with the immersed boundary method, part 2: Drop impact and heat transfer. Numerical Heat Transfer, Part B 44, 119–143 (2003)

    Article  Google Scholar 

  49. Francois, M., Shyy, W.: Computations of drop dynamics with the immersed boundary method, part 1: Numerical algorithm and buoyancy-induced effect. Numerical Heat Transfer, Part B 44, 101–118 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shyy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuan, CK., Sim, J. & Shyy, W. Adaptive thermo-fluid moving boundary computations for interfacial dynamics. Acta Mech Sin 28, 999–1021 (2012). https://doi.org/10.1007/s10409-012-0126-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0126-3

Keywords

Navigation