Skip to main content
Log in

Axial vibration analysis of nanocones based on nonlocal elasticity theory

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Carbon nanocones have quite fascinating electronic and structural properties, whose axial vibration is seldom investigated in previous studies. In this paper, based on a nonlocal elasticity theory, a nonuniform rod model is applied to investigate the small-scale effect and the nonuniform effect on axial vibration of nanocones. Using the modified Wentzel-Brillouin-Kramers (WBK) method, an asymptotic solution is obtained for the axial vibration of general nonuniform nanorods. Then, using similar procedure, the axial vibration of nanocones is analyzed for nonuniform parameters, mode number and nonlocal parameters. Explicit expressions are derived for mode frequencies of clamped-clamped and clamped-free boundary conditions. It is found that axial vibration frequencies are highly overestimated by the classical rod model because of ignorance of the effect of small length scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, I., Heung, Y., Kim, J., et al.: Introduction to carbon nanotube and nanofiber smart materials. Compos. Part B 37, 382–394 (2010)

    Article  Google Scholar 

  2. Yang, N., Zhang, G., Li B.: Carbon nanocone: A promising thermal rectifier. Appl. Phys. Lett. 93, 243111 (2008)

    Article  Google Scholar 

  3. Huang, C. J., Yeh, C. M., Chen, M. Y., et al.: Field Emission from a carbon nanofiber/carbon nanocone composite structure fabricated by a two-step growth process. J. of The Electrochem. Soc. 153, H15–H17 (2006).

    Article  Google Scholar 

  4. Charlier, J. C., Rignanese, G. M.: Electronic structure of carbon nanocones. Phys. Rev. Lett. 86, 5970–5973 (2001)

    Article  Google Scholar 

  5. Yudasaka, M., Iijima, S., Crespi, V. H.: Single-wall carbon nanohorns and nanocones. Top. Appl. Phys. 111, 605–629 (2008)

    Article  Google Scholar 

  6. Ge, M., Sattler, K.: Observation of fullerene cones. Chem. Phys. Lett. 220, 192–196 (1994).

    Article  Google Scholar 

  7. Krishnan, A., Dujardin, E., Treacy, M., et al.: Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451–454 (1997)

    Article  Google Scholar 

  8. Jaszczak, J. A., Robinson, G.W., Svetlana, D., et al.: Naturally occurring graphite cones. Carbon. 41, 2085–2092 (2003)

    Article  Google Scholar 

  9. Double, D. D., Hellawell, A.: Cone-helix growth forms of graphite. Acta Metall. 22, 481–487 (1974)

    Article  Google Scholar 

  10. Ajima, K., Yudasaka, M., Murakami, T., et al.: Carbon nanohorns as anticancer drug carriers. Mol. Pharm. 2, 475–480 (2005)

    Article  Google Scholar 

  11. Yoshitake, Y. T., Shimakawa, Y., Kuroshima, S., et al.: Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Physica B 323, 124–126 (2002)

    Article  Google Scholar 

  12. Batra, R. C., Gupta, S. S.: Wall thickness and radial breathing modes of single-walled carbon nanotubes. J. Appl. Mech. 75, 061010 (2008)

    Article  Google Scholar 

  13. Jordan, S. P., Crespi V. H.: Theory of carbon nanocones: Mechanical chiral inversion of a micron-scale three-dimensional object. Phys. Rev. Lett. 93, 255504 (2004)

    Article  Google Scholar 

  14. Eringen, A. C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eringen, A. C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  16. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, Berlin Heidelberg New York (2002)

    MATH  Google Scholar 

  17. Eringen, A. C., Edelen, D. G. B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, P., Lee, H. P., Lu, C., et al.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99, 073510 (2006)

    Article  Google Scholar 

  19. Wang, Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301 (2005)

    Article  Google Scholar 

  20. Wang, Q., Varadan, V. K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15, 659–666 (2006)

    Article  Google Scholar 

  21. Peddieson, J., Buchanan, G. G., McNitt, R. P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  22. Wang, C. M., Zhang, Y. Y., Ramesh, S. S., et al.: Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D: Appl. Phys. 39, 3904–3909 (2006)

    Article  Google Scholar 

  23. Talebian, S. T., Tahani, M., Hosseini, S. M., et al.: Displacement time history analysis and radial wave propagation velocity in pressurized multiwall carbon nanotubes. Comp. Mater. Sci. 49, 283–292 (2010)

    Article  Google Scholar 

  24. Lu, P., Lee, H. P., Lu, C., et al.: Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct. 44, 5289–5300 (2007)

    Article  MATH  Google Scholar 

  25. Zhang, Y. Q., Liu, G. R., Han, X.: Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure. Phys. Lett. A 349, 370–376 (2006)

    Article  Google Scholar 

  26. Chang, T. P.: Small scale effect on axial vibration of nonuniform and non-homogeneous nanorods. Comp. Mater. Sci. 54, 23–27 (2012)

    Article  Google Scholar 

  27. Danesh, M., Farajpour, A., Mohammadi, M.: Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech. Res. Commun. 39, 23–27 (2011)

    Article  Google Scholar 

  28. Lee, J. H., Lee, B. S.: Modal analysis of carbon nanotubes and nanocones using FEM. Comp. Mater. Sci. 51, 30–42 (2012)

    Article  Google Scholar 

  29. Firouz-Abadi, R. D., Fotouhi, M. M., Haddadpour, H.: Free vibration analysis of nanocones using a nonlocal continuum model. Phys. Lett. A 375, 3593–3598 (2011)

    Article  Google Scholar 

  30. Reddy, J. N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  31. Guo, S. Q., Yang, S. P.: Free longitudinal vibrations of nonuniform rods. Science China Technological Sciences 54, 2735–2745 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo, S. Q., Yang S. P.: Wave motions in nonuniform one dimensional waveguides. J. Vib. Control 18, 192–100 (2012)

    MathSciNet  Google Scholar 

  33. Aydogdu, M.: Axial vibration of the nanorods with the nonlocal continuum rod model. Physica E 41, 861–864 (2009)

    Article  Google Scholar 

  34. Ebbesen, T.W.: Cones and tubes: geometry in the chemistry of carbon. Acc. Chem. Res. 31, 558–566 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Qi Guo.

Additional information

The project was supported by the National Natural Science Foundation of China (11072157 and 10932006) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT0971).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, SQ., Yang, SP. Axial vibration analysis of nanocones based on nonlocal elasticity theory. Acta Mech Sin 28, 801–807 (2012). https://doi.org/10.1007/s10409-012-0109-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0109-4

Keywords

Navigation