Skip to main content
Log in

LES prediction of space-time correlations in turbulent shear flows

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-viscosity sub-grid scale (SGS) model over-predicts the space-time correlations than the DNS. The overpredictions are further quantified by the integral scales of directional correlations and convection velocities. A physical argument for the overprediction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions. This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows. It suggests that enstrophy is crucial to the LES prediction of space-time correlations. The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, UK (2000)

    Book  MATH  Google Scholar 

  2. Moin, P.: Advances in large eddy simulation methodology for complex flows. Int. J. Heat Fluid Flow 23, 710–720 (2002)

    Article  Google Scholar 

  3. Wang, M., Freund, J.B., Lele, S.K.: Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38, 483–512 (2006)

    Article  MathSciNet  Google Scholar 

  4. Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  5. Goldstein, M.E.: Aeroacoustics. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  6. He, G.W., Rubinstein, R., Wang, L.P.: Effects of subgrid-scale modeling on time correlations in large eddy simulation. Phys. Fluids 14, 2186–2193 (2002)

    Article  Google Scholar 

  7. He, G.W., Wang, M., Lele, S.K.: On the computation of spacetime correlations by large-eddy simulation. Phys. Fluids 16, 3859–3867 (2004)

    Article  Google Scholar 

  8. Flohr, P., Vassilicos, J.C.: A scalar subgrid model with flow structures for large-eddy simulation of scalar variance. J. Fluid Mech. 407, 315–349 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, Y., He, G.W., Wang, L.P.: Effects of subgrid-scale modeling on Lagrangian statistics in large-eddy simulation. J. Turbulence 9, 1–25 (2008)

    MathSciNet  Google Scholar 

  10. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Wea. Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  11. Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 1–32 (2000)

    Article  MathSciNet  Google Scholar 

  12. Kraichnan, R.H.: Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys. Fluids 7, 1723 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Park, N., Lee, S., Lee, J., et al.: A dynamic subgrid-scale eddy viscosity model with a global model coefficient. Phys. Fluid 18, 125109 (2006)

    Article  Google Scholar 

  14. Dong, Y.H., Sagaut, P.: A study of time correlations in lattice Boltzmann-based large-eddy simulation of iso-tropic turbulence. Phys. Fluid 20, 035105 (2008)

    Article  Google Scholar 

  15. Martin, P.: Preliminary study of the SGS time scales for compressible boundary layer using DNS data. AIAA paper 2005-0665

  16. Favier, B., Godeferd, F.S., Cambon, C.: Modeling the far-field acoustic emission of rotating turbulence. J. Turbulence 9, 1–21 (2008)

    Article  Google Scholar 

  17. Favier, B., Godeferd, F.S., Cambon, C.: On space-time correlations of isotropic and rotating turbulence. Phys. Fluids 22, 015101–1 (2010)

    Article  Google Scholar 

  18. He, G.W., Zhang, J.B.: Elliptic model for space-time correlations in turbulent shear flows. Phys. Rev. E 73, 055303 (2006)

    Article  Google Scholar 

  19. Zhao, X., He, G.W.: Space-time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79, 046316 (2009)

    Article  Google Scholar 

  20. Quadrio, M., Luchini, P.: Integral space-time scales in turbulent wall flows. Phys. Fluid 15, 2219 (2003)

    Article  Google Scholar 

  21. Kim, J., Hussain, F.: Propagation velocity of perturbations in turbulent channel flow. Phys. Fluid A 5, 695–706 (1993)

    Article  Google Scholar 

  22. Choi, H., Moin, P.: On the space-time characteristics of wall-pressure fluctuations. Phys. Fluids A 2, 1450–1460 (1990)

    Article  Google Scholar 

  23. Chung, D., Mckeon, B.J.: Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341–364 (2010)

    Article  MATH  Google Scholar 

  24. Hutchins, N., Marusic, I.: Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A 365, 647–664 (2007)

    Article  MATH  Google Scholar 

  25. He, X.Z., He, G.W., Tong, P.: Small-scale turbulent fluctuations beyond Taylor’s frozen flow hypothesis. Phys. Rev. E 81, 065303(R) (2010)

    Google Scholar 

  26. Zhou, Q., Li, C.M., Lu, Z.M., et al.: Experimental investigation of longitudinal space-time correlations of the velocity field in turbulent Rayleigh-Bènard convection. J. Fluid Mech. 683, 94–111 (2011)

    Article  MATH  Google Scholar 

  27. Marstorp, L., Brethouwer, G., Johanssonc, A.V.: A stochastic subgrid model with application to turbulent flow and scalar mixing. Phys. Fluids 19, 035107 (2007)

    Article  Google Scholar 

  28. Tennekes, H.: Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67, 561 (1975)

    Article  MATH  Google Scholar 

  29. Carati, D., Ghosal, S., Moin, P.: On the representation of backscatter in dynamic localization models. Phys. Fluid. 7, 606 (11 pages) (1995)

    Article  MATH  Google Scholar 

  30. Mason, P., Thomson, D.J.: Stochastic backscatter in large-eddy simulation of boundary layers. J. Fluid Mech. 242, 51–78 (1992)

    Article  MATH  Google Scholar 

  31. Westbury, P.S., Dunn, D.C., Morrison, J.F.: Analysis of a stochastic backscatter model for the large-eddy simulation of wall-bounded flows. Europ. J. Mech. B/Fluid 23, 735–758 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Wei He.

Additional information

The project was supported by the National Basic Research Program of China (973 Program) (2007CB814800) and the National Natural Science Foundation of China (10325211 and 10628206).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L., Li, D., Zhang, X. et al. LES prediction of space-time correlations in turbulent shear flows. Acta Mech Sin 28, 993–998 (2012). https://doi.org/10.1007/s10409-012-0088-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0088-5

Keywords

Navigation