Acta Mechanica Sinica

, Volume 28, Issue 2, pp 385–392 | Cite as

Nonlinear magneto-electric response of a giant magnetostrictive/piezoelectric composite cylinder

Research Paper

Abstract

In this study, we investigate the nonlinear coupling magneto-electric (ME) effect of a giant magnetostrictive/piezoelectric composite cylinder. The nonlinear constitutive relations of the ME material are taken into account, and the influences of the nonlinear material properties on the ME effect are investigated for the static and dynamic cases, respectively. The influences of different constraint conditions on the ME effect are discussed. In the dynamic case considering nonlinear material properties, the double frequency ME response (The response frequency is twice the applied magnetic frequency) is obtained and discussed, which can be used to explain the experiment phenomenon in which the input signal with frequency f is converted to the output signal with 2 f in ME laminated structures. Some calculations on nonlinear ME effect are conducted. The obtained results indicate that the nonlinear material properties affect not only the magnitude of the ME effect in the static case but also the ME response frequency in the dynamic case.

Keywords

Nonlinear coupling ME effect Layered composite cylinder Double frequency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Srinivasan, G.: Magnetoelectric composite. Annu. Rev. Matter Res. 40, 153–178 (2001)CrossRefGoogle Scholar
  2. 2.
    Nan, C.W., Bichurin, M.I., Dong, S., et al.: Multiferroic magnetoelectric composites: Historical perspective, status and future directions. J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  3. 3.
    Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, 123–152 (2005)CrossRefGoogle Scholar
  4. 4.
    Harshe, G., Dougherty, J.P., Newnham, R.E.: Theoretical modeling of multilayer magnetoelectric composites. Int. J. Appl. Electromagn. Mater. 4, 145–159 (1993)Google Scholar
  5. 5.
    Chang, C.M., Carman, G.P.: Modeling shear lag and demagnetization effects in magneto-electric laminate composites. Phys. Rev. B 76, 134116 (2007)CrossRefGoogle Scholar
  6. 6.
    Bichurin, M, I., Petrov, V.M., Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers, Phys. Rev. B 68, 054402 (2003)CrossRefGoogle Scholar
  7. 7.
    Kumaravel, A., Ganesan, N. Sethuraman, R.: Steady-state analysis of a three-layered electromagneto-elastic strip in a thermal environment. SmartMater. Struct. 16, 282–295 (2007)CrossRefGoogle Scholar
  8. 8.
    Wong, C.K., Shin, F.G.: Magnetoelectric effects of laminated structures with particulate composite layers. J. Phys. D: Appl. Phys. 40, 135002 (2008)CrossRefGoogle Scholar
  9. 9.
    Petrov, V.M., Srinivasan, G., Bichurun, M.I., et al.: Theory of magnetoelectric effect for bending modes in magnetostrictivepiezoelectric bilayers. J. Appl. Phys. 105, 063911 (2009)CrossRefGoogle Scholar
  10. 10.
    Bichruin, M.I., Petrov, V.M., Averkin, S.V., et al.: Electromechanical resonance in magnetoelectric layered structures. Phys. Solid State 52(10), 2116–2122 (2010)CrossRefGoogle Scholar
  11. 11.
    Xing, Z., Dong, S., Zhai, J., et al.: Resonant bending mode of Terfenol-D/steel/Pb(Zr,Ti)O3 magnetoelectric laminated composites. Appl. Phys. Lett. 89, 112911 (2006)CrossRefGoogle Scholar
  12. 12.
    Pan, E.: Exact solution for simple supported and multilayered magneto-electro-elastic plates. ASME J. Appl. Mech. 66, 608–618 (2001)CrossRefGoogle Scholar
  13. 13.
    Ramirez, F., Heyliger, P.R., Pan, E.: Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J. Sound Vib. 292, 626–644 (2006)CrossRefGoogle Scholar
  14. 14.
    Pan, E., Wang, R.: Effects of geometric size and mechamical boundary conditions on magnetolelectric coupling in multiferroic composites. J. Phys. D: Appl. Phys. 42, 245503 (2009)CrossRefGoogle Scholar
  15. 15.
    Zhao, M.H., Fan, C.Y.: Strip electric-magnetic breakdown model in magnetoelectroelastic medium. J.Mech. Phys. Solids 56, 3441–3458 (2008)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Feng, W.J., Pan, E.:, Dynamic frature behaviors of an interfacial crack between two dissimilarmagneto-electro-elastic plate. Eng. Fract. Mech. 75, 1468–1487 (2008)CrossRefGoogle Scholar
  17. 17.
    Hou, P.F., Leung, A.Y.T.: The transient response of magnetolelectro-elastic hollow cylinders. Smart Mater. Struct. 13, 762–776 (2004)CrossRefGoogle Scholar
  18. 18.
    Wang, H.M., Liu, C.B., Ding, H.J.: Dynamic behavior of piezoelectric /magnetostrictive composite holly cylinder. Arch. Appl. Mech. 79, 753–771 (2009)CrossRefGoogle Scholar
  19. 19.
    Wang, H.M., Pan, E., Chen, W.Q.: Enhancing magnetoelectric effect via the curvature of composite cylinder. J. Appl. Phys. 107, 093514 (2010)CrossRefGoogle Scholar
  20. 20.
    Shindo, Y., Mori, K., Narita, F.: Elecromagneto-mechanical fields of giant magnetostrictive/piezoelectric laminates. Acta Mech. 212(3–4), 253–261 (2010)MATHCrossRefGoogle Scholar
  21. 21.
    Wang, Y., Atulasimha, J., Prasoon, R.: Nonlinear magnetoelectric behavior of Terfenol-D/PZT-5A laminate composites. Smart Mater. Struct. 19, 125005 (2010)CrossRefGoogle Scholar
  22. 22.
    Zheng, X.J., Liu, X.E.: A nonlinear constitutive model for Terfenol-D rods. J. Appl. Phys. 97, 053901 (2005)CrossRefGoogle Scholar
  23. 23.
    Jia, Z., Liu, W., Zhang, Y., et al.: A nonlinear magnetomechanical coupling model of giant magnetostcrictive thin films that at low magnetic fields. Sens. Actuators, A 128, 158–164 (2006)CrossRefGoogle Scholar
  24. 24.
    Pei, Y., Fang, D.N., Feng, X.: Magnetoelasticity of Tb0.3Dy0.7Fe1.95 alloys in a multiaxial stress-magnetic field space. Appl. Phys. Lett. 90, 182505 (2007)CrossRefGoogle Scholar
  25. 25.
    Zhang, C.L., Yang, J.S., Chen, W.Q.: Harvesting magnetic energy using extensional vibration of laminated magnetoelectric plates. Appl. Phys. Lett. 95, 013511 (2009)CrossRefGoogle Scholar
  26. 26.
    Ma, J., Li, Z., Lin, Y., et al.: A novel frequency multiplier based on magnetoelectric laminate. J. Magn. Mater. 323, 101–103 (2011)CrossRefGoogle Scholar
  27. 27.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, London (1922)MATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Key Laboratory of Mechanics on Western Disaster and Environment, Ministry of Education and College of Civil Engineering and MechanicsLanzhou UniversityLanzhouChina

Personalised recommendations