Skip to main content
Log in

Surrogate-based modeling and dimension reduction techniques for multi-scale mechanics problems

  • Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Successful modeling and/or design of engineering systems often requires one to address the impact of multiple “design variables” on the prescribed outcome. There are often multiple, competing objectives based on which we assess the outcome of optimization. Since accurate, high fidelity models are typically time consuming and computationally expensive, comprehensive evaluations can be conducted only if an efficient framework is available. Furthermore, informed decisions of the model/hardware’s overall performance rely on an adequate understanding of the global, not local, sensitivity of the individual design variables on the objectives. The surrogate-based approach, which involves approximating the objectives as continuous functions of design variables from limited data, offers a rational framework to reduce the number of important input variables, i.e., the dimension of a design or modeling space. In this paper, we review the fundamental issues that arise in surrogate-based analysis and optimization, highlighting concepts, methods, techniques, as well as modeling implications for mechanics problems. To aid the discussions of the issues involved, we summarize recent efforts in investigating cryogenic cavitating flows, active flow control based on dielectric barrier discharge concepts, and lithium (Li)-ion batteries. It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for “scale bridging.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Vector of polynomial coefficients

C :

Cycling rate, where 1C is the rate required to charge/discharge the cell in one hour

D :

Characteristic length scale (m)

D s :

Solid diffusion coefficient (m2/s)

E :

Expectation value

f v :

Vapor mass fraction/Frequency of applied voltage (kHz)

F x :

x-directional Lorentzian force (mN/m)

F x,S :

Domain averaged x-directional Lorentzian force (mN/m)

F x,ST :

Time and domain averaged x-directional Lorentzian force (mN/m)

h :

Enthalpy (kJ/kg)

L :

Latent heat (kJ/kg)

m + :

Source term in cavitation model (1/s)

m :

Sink term in cavitation model (1/s)

n p :

Particle number density of species p (1/m3)

N s :

Number of sampled design points

N RBF :

Number of neural basis functions

N v :

Number of design variables

P :

Pressure (N/cm2); power input due to the charge current through the upper electrode (W)

P v :

Saturation vapor pressure (N/cm2)

P diff :

L 2 norm between experiment and predicted pressure (N/cm2)

P T :

Time averaged power input due to the charge current through the upper electrode (W)

Pr :

Prandtl number

r f :

Positive-to-negative polarity time ratio of applied voltage waveform

R 2adj :

Adjusted coefficient of determination

R s,p :

Solid particle radius in positive electrode (μm)

s :

Vector of neuron position

S :

Area of computational domain for gas (m2)

S M :

Main sensitivity index

S T :

Total sensitivity index

t :

Reference time scale, t = D/U (s)

T :

Temperature (K) Period of applied voltage (s)

T diff :

L 2 norm between experiment and predicted temperature (K)

u :

Velocity (m/s)

u p :

Particle bulk velocity of species p, (u x,p , u y,p , u z,p ) (m/s)

U :

Reference velocity (m/s)

V :

Variance

V app :

Applied voltage to the upper electrode (kV)

x :

Vector of design variables; Space variable (m)

y :

Objective function

ŷ:

Surrogate approximation of objective function

ȳ:

Mean value of objective function

z :

Systematic departure

αl :

Liquid volume fraction

β:

Spread coefficient of radial basis neural network

ɛd :

Dielectric constant of insulator

μ:

Dynamic viscosity (kg/ms)

ρ:

Density (kg/m3)

σ:

Electronic conductivity (S/m)

σ :

Cavitation number based on the free stream temperature

σa :

RMS error of polynomial response surface at sampled points

τ:

Dimensionless time

References

  1. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comp. J. 6, 163–168 (1963)

    MATH  MathSciNet  Google Scholar 

  2. Papila, N., Shyy, W., Griffin, L., et al.: Shape optimization of supersonic turbines using global approximation methods. J. Prop. Power 18, 509–518 (2002)

    Article  Google Scholar 

  3. Shyy, W., Papila, N., Vaidyanathan, R., et al.: Global design optimization for aerodynamics and rocket propulsion components. Prog. Aero. Sci. 37, 59–118 (2001)

    Article  Google Scholar 

  4. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods of selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product in Optimization Using Designed Experiments. (1st ed.) Wiley and Sons Inc. (1995)

  6. Queipo, N.V., Haftka, R.T., Shyy, W., et al.: Surrogate-based analysis and optimization. Prog. Aero. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  7. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogatebased optimization. Prog. Aero. Sci. 45, 50–79 (2009)

    Article  Google Scholar 

  8. Zones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Global Opt. 21, 345–383 (2001)

    Article  Google Scholar 

  9. Sacks J., Welch, W.J., Mitchell, T.J., et al.: Design and analysis of computer experiments. Statistical Science 4(4), 409–435 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lophaven, S.N., Nielsen, H.B., Sondergaard, J.: DACE-A Matlab kriging toolbox. Version 2.0, Technical Report, IMM-TR-2002-12, Technical University of Denmark, Denmark (2002)

    Google Scholar 

  11. Goel, T., Dorney, D.J., Haftka, R.T., et al.: Improving the hydrodynamic performance of diffuser vanes via shape optimization. Comp. Fluids 37, 705–723 (2008)

    Article  Google Scholar 

  12. Goel, T., Haftka, R.T., Shyy, W., et al.: Ensemble of surrogates. Struct. Multidisc. Optim. 33, 199–216 (2007)

    Article  Google Scholar 

  13. Goel, T., Haftka, R.T., Shyy, W.: Comparing error estimation measures for polynomial and kriging approximation of noisefree functions. Struct. Multidisc. Optim. 38, 429–442 (2009)

    Article  Google Scholar 

  14. Laslett, G.M.: Kriging and splines: an empirical comparison of their predictive performance in some applications. J. Amer. Stat. Assc. 89(426), 391–400 (1994)

    Article  MathSciNet  Google Scholar 

  15. Meckesheimer, M., Booker, A.J., Barton, R.R., et al.: Computationally inexpensive metamodel assessment strategies. AIAA J. 40(10), 2053–2060 (2002)

    Article  Google Scholar 

  16. Sobol, I.: Sensitivity estimates for non-linear mathematical models. Math. Modeling Comput. Exp. 4, 407–414 (1993)

    MathSciNet  Google Scholar 

  17. Mack, Y., Goel, T., Shyy, W., et al.: Surrogate model-based optimization framework: a case study in aerospace design. Stud. Comp. Intel. 51, 323–342 (2007)

    Article  Google Scholar 

  18. Utturkar, Y., Wu, J., Wang, G., et al.: Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion. Prog. Aero. Sci. 41, 558–608 (2005)

    Article  Google Scholar 

  19. Knapp, R.T., Daily, J.W., Hammitt, F.G.: Cavitation, McGraw-Hill, New York (1970)

    Google Scholar 

  20. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford Engineering & Sciences Series, Oxford University Press, New York (1995)

    Google Scholar 

  21. Venkateswaran, S., Lindau, J.W., Kunz, R.F., et al.: Preconditioning algorithms for the computation of multiphase mixture flows. J. Comp. Phys. 179, 1–29 (2002)

    Article  Google Scholar 

  22. Joseph, D.D.: Cavitation and the state of stress in a flowing liquid. J. Fluid Mech. 366, 367–378 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lemmon, E.W., McLinden, M.O., Huber, M.L.: REFPROP: Reference fluid thermodynamic and transport properties. NIST Standard Database 23, version 7.0 (2002)

  24. Goel, T., Thakur, S., Haftka, R.T., et al.: Surrogate modelbased strategy for cryogenic cavitation model validation and sensitivity evaluation. Int. J. Numer. Meth. Fluids 58, 969–1007 (2008)

    Article  MATH  Google Scholar 

  25. Tseng, C.C., Wei, Y.J., Wang, G., et al.: Review: modeling of turbulent, isothermal and cryogenic cavitation under attached conditions. Acta Mechanica Sinica 26, 325–353 (2010)

    Article  MathSciNet  Google Scholar 

  26. Tseng, C., Shyy, W.: Modeling for isothermal and cryogenic cavitation. Int. J. Heat Mass Trans. 53, 513–525 (2010)

    Article  MATH  Google Scholar 

  27. Wang, G., Senocak, I., Shyy, W., et al.: Dynamics of attached turbulent cavitating flows. Prog. Aero. Sci. 37, 551–581 (2001)

    Article  Google Scholar 

  28. Senocak, I., Shyy, W.: Interfacial dynamics-based modeling of turbulent cavitating flows, part-1: model development and steady-state computations. Int. J. Numer. Meth. Fluids 44, 975–995 (2004)

    Article  MATH  Google Scholar 

  29. Li, X., Wang, G., Yu, Z., et al.: Multiphase fluid dynamics and transport processes of low capillary number cavitating flows. Acta Mechanica Sinica 25, 161–172 (2009)

    Article  Google Scholar 

  30. Hord, J.: Cavitation in liquid cryogens II-hydrofoil. NASA CR-2156 (1973)

  31. McDaniel, E.W.: Collision Phenomena in Ionized Gases. John Wiley & Sons, New York (1964)

    Google Scholar 

  32. Mitchner, M., Kruger Jr., C.H.: Partially Ionized Gases, John Wiley & Sons, New York (1973)

    Google Scholar 

  33. Roth, J.R., Sherman, D.M.: Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. 36th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 98-0328, Reno, NV (1998)

  34. Shyy, W., Jayaraman, B., Andersson, A.: Modeling of glow discharge-induced fluid dynamics. J. Appl. Phys. 92(11), 6434–6443 (2002)

    Article  Google Scholar 

  35. Porter, C.O., Baughn, J.W., McLaughlin, T.E., et al.: Plasma actuator force measurements. AIAA J. 45(7), 1562–1570 (2007)

    Article  Google Scholar 

  36. Jukes, T.N., Choi, K., Johnson, G.A., et al.: Characterization of surface plasma-induced wall flows through velocity and temperature measurements. AIAA J. 44(4), 764–771 (2006)

    Article  Google Scholar 

  37. Forte, M., Jolibois, J., Moreau, E., et al.: Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocityapplication to airflow control. 3rd AIAA Flow Control Conference, AIAA Paper 2006-2863, San Francisco, CA (2006)

  38. Abe, T., Takizawa, Y., Sato, S., et al.: A parametric experimental study for momentum transfer by plasma actuator. 45th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2007-187, Reno, NV (2007)

  39. Roth, J.R., Dai, X.: Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device. 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2006-1203, Reno, NV (2006)

  40. Jayaraman, B., Tharkur, S., Shyy, W.: Modeling of fluid dynamics and heat transfer induced by dielectric barrier plasma actuator. J. Heat Trans. 129, 517–525 (2007)

    Article  Google Scholar 

  41. Jayaraman, B., Shyy, W.: Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer. Prog. Aero. Sci. 44, 139–191 (2008)

    Article  Google Scholar 

  42. Ward, A.L.: Calculations of cathode-fall characteristics. J. Appl. Phys. 33(9), 2789–2974 (1962)

    Article  Google Scholar 

  43. Jayaraman, B., Cho, Y., Shyy, W.: Modeling of dielectric barrier discharge plasma actuator. J. Appl. Phys. 103, 053304 (2008)

    Article  Google Scholar 

  44. Doyle, M., Fuller, T.F., Newman, J.: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140, 1526–1533 (1993)

    Article  Google Scholar 

  45. Fuller, T.F., Doyle, M., Newman, J.: Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 141, 1–10 (1994)

    Article  Google Scholar 

  46. Doyle, M., Newman, J., Gozdz, A.S., et al.: Comparison of modeling predictions with experimental data from plastic lithium ion cells. J. Electrochem. Soc. 143, 1890–1903 (1996)

    Article  Google Scholar 

  47. Lu, C.H., Lin, S.W.: Influence of the particle size on the electrochemical properties of lithium manganese oxide. J. Power Sources 97–98, 458–460 (2001)

    Article  Google Scholar 

  48. Zhang, D., Popov, B.N., White, R.E.: Modeling lithium intercalation of a single spinel particle under potentiodynamic control. J. Electrochem. Soc. 147, 831–838 (2000)

    Article  Google Scholar 

  49. Du, W., Gupta, A., Zhang, X., et al.: Effect of cycling rate, particle size and transport properties on Li-ion cathode performance. Int. J. Heat Mass Trans. 53, 3552–3561 (2010)

    Article  MATH  Google Scholar 

  50. Gupta, A., Seo, J.H., Zhang, X., et al.: Effective transport properties of LiMn2O4 electrode via particle-scale modeling. J. Electrochem. Soc. 158 A487–497 (2011)

    Article  Google Scholar 

  51. Zhang, X., Sastry, A.M., Shyy, W.: Intercalation-induced stress and heat generation inside lithium-ion battery cathode particles. J. Electrochem. Soc. 155, A542–552 (2008)

    Article  Google Scholar 

  52. Zhang, X., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910–916 (2007)

    Article  Google Scholar 

  53. Sozer, E., Shyy, W.: Modeling of fluid dynamics and heat transfer through porous media for liquid rocket propulsion. International Journal of Numerical Methods for Heat and Fluid Flow 18, 883–899 (2008)

    Article  MathSciNet  Google Scholar 

  54. Martin, A., Saltiel, C., Shyy, W.: Heat transfer enhancement with porous inserts in recirculating flows. ASME Journal of Heat Transfer 120, 458–467 (1998)

    Article  Google Scholar 

  55. Shyy, W., Correa, S.M., Braaten, M.E.: Computation of flow in a gas turbine combustor. Combustion Science and Technology 58, 97–117 (1988)

    Article  Google Scholar 

  56. Shyy, W., Thakur, S.S., Ouyang, H., et al.: Computational Techniques for Complex Transport Phenomena. Cambridge University Press, New York, hardcover (1997), paperback (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shyy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shyy, W., Cho, YC., Du, W. et al. Surrogate-based modeling and dimension reduction techniques for multi-scale mechanics problems. Acta Mech Sin 27, 845–865 (2011). https://doi.org/10.1007/s10409-011-0522-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-011-0522-0

Keywords

Navigation