Skip to main content
Log in

Turbulence and cavitation models for time-dependent turbulent cavitating flows

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational capabilities for unsteady cavitating flows, different cavitation and turbulence model combinations are conducted. The selected cavitation models include several widely-used models including one based on phenomenological argument and the other utilizing interface dynamics. The k-ɛ turbulence model with additional implementation of the filter function and density correction function are considered to reduce the eddy viscosity according to the computed turbulence length scale and local fluid density respectively. We have also blended these alternative cavitation and turbulence treatments, to illustrate that the eddy viscosity near the closure region can significantly influence the capture of detached cavity. From the experimental validations regarding the force analysis, frequency, and the cavity visualization, no single model combination performs best in all aspects. Furthermore, the implications of parameters contained in different cavitation models are investigated. The phase change process is more pronounced around the detached cavity, which is better illus-trated by the interfacial dynamics model. Our study provides insight to aid further modeling development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

σ :

Local cavitation number; cavitation number based on the local temperature

C ɛ1,C ɛ2, σ ɛ , σ k :

Coefficients of k-ɛ turbulence model

C :

Chord length of hydrofoil

L :

Characteristic length scale

I :

Turbulence intensity

k :

Turbulent kinetic energy

.m +, .m :

Source and sink terms in the cavitation model

p :

Pressure

p v :

Saturation vapor pressure

Re :

Reynolds number

t :

Reference time scale, t = L/U

U :

Reference velocity scale

u :

Velocity

U v,n :

Normal component of the vapor velocity moving away from the interface

U I,n :

Normal interfacial velocity

x :

Space variable

α l :

Liquid volume fraction

ρ :

Density

µ:

Dynamic viscosity

µTL|inlet :

Eddy-to-laminar viscosity ratio at the inlet

ϕm :

Mixture property

ɛ :

Turbulent dissipation rate

Δ :

Filter size in filter-based model

References

  1. Utturkar, Y., Wu, J., Wang, G., et al.: Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion. Progress in Aerospace Sciences 41(7), 558–608 (2005)

    Article  Google Scholar 

  2. Knapp, R.T., Daily, J.W., Hammitt, F.G.: Cavitation. McGraw-Hill. New York (1970)

    Google Scholar 

  3. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford Engineering & Sciences Series 44, Oxford University Press (1995)

  4. Joseph, D.D.: Cavitation in a flowing liquid. Phys. Review E 51(3), 1649–1650 (1995)

    Article  Google Scholar 

  5. Joseph, D.D.: Cavitation and the state of stress in a flowing liquid. Journal of Fluid Mechanics 366, 367–378 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kubota, A., Kato, H., Yamaguchi, H., et al.: Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique. J. Fluid Eng-T. ASME 111, 204–210 (1989)

    Article  Google Scholar 

  7. Leroux, J.B., Astolfi, J.A., Billare, J.Y.: An experimental study of unsteady partial cavitation. ASME 26, 94–101 (2004)

    Google Scholar 

  8. Kawanami, Y., Kato, H., Tanimura, M., et al.: Mechanism and control of cloud cavitation. J. Fluid Eng-T. ASME 119, 788–794 (1997)

    Article  Google Scholar 

  9. LaCallenaere, M., Franc, J.P., Michel, J.M., et al.: The cavitation instability induced by the development of a re-entrant jet. J. Fluid Mech. 444, 223–256 (2001)

    Google Scholar 

  10. Gopalan, S., Katz, J.: Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12(4), 895–911 (2000)

    Article  MATH  Google Scholar 

  11. Li, C.Y., Ceccio, S.L: Interaction of single travelling bubbles with the boundary layer and attached cavitation. J. Fluid Mech. 322, 329–353 (1996)

    Article  Google Scholar 

  12. Chen, Y., Hesiter, S. D.: A numerical treatment for attached cavitaition. J. Fluids Eng. 116, 613–618 (1994)

    Article  Google Scholar 

  13. Deshpande, M., Feng, J., Merkle, C.L.: Numerical modeling of the thermodynamic effects of cavitation. J. Fluids Eng. 119, 420–427 (1997)

    Article  Google Scholar 

  14. Huang, D., Zhuang, Y., Cai, R.: A computational method for cavitational flows based on energy conservation. IMechE 207, 1333–1338 (2007)

    Google Scholar 

  15. Edward, J.R., Franklin, R.K., Liou, M.S.: Low-diffusion flux-splitting methods for real fluid flows with phase transition. AIAA Journal 38(9), 1624–1633 (2000)

    Article  Google Scholar 

  16. Delannoy, Y., Kueny, J.L.: Cavity flow prediction based on the Euler equations. ASM Cavitation and Multiphase Flow Forum. ASME-FED 98, 153–158 (1990)

    Google Scholar 

  17. Wu, J.Y., Wang, G.Y., Shyy, W.: Time-dependent turbulent cavutating flow computations with interfacial transport and filter-based models. International Journal for Numerical Methods in Fluids 49(7), 739–761 (2005)

    Article  MATH  Google Scholar 

  18. Merkle, C.L., Feng, J., Buelow, P.E.O.: Computational modeling of sheet cavitation. Proc. 3rd International Symposium on Cavitation, Grenoble, France 1998

  19. Kunz, R.F., Boger, D.A., Stinebring, D.R., et al.: A preconditioned Navier-Stokes method for two phase flows with application to cavitation prediction. Comput. Fluids 29, 849–875 (2000)

    Article  MATH  Google Scholar 

  20. Hosangadi, A., Ahuja, V.: A numerical study of cavitation in cryogenic fluids. Journal of Fluids Engineering 127, 267–281 (2005)

    Article  Google Scholar 

  21. Senocak, I., Shyy, W.: Interfacial dynamics-based modeling of turbulent cavitating flows. Part 1: model development and steady-state computations. Int. J. Numer. Meth. Fluids 44, 975–995 (2004)

    Article  MATH  Google Scholar 

  22. Senocak, I., Shyy, W.: Interfacial dynamics-based modeling of turbulent cavitating flows. Part 2: time-dependent computations. Int. J. Numer. Meth. Fluids 44, 997–1016 (2004)

    Article  MATH  Google Scholar 

  23. Utturkar, Y., Wu, J., Wang, G., et al.: Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion. Progress in Aerospace Sciences 41(7), 558–608 (2005)

    Article  Google Scholar 

  24. Tseng, C., Shyy, W.: Modeling for isothermal and cryogenic cavitation. Int. J. Heat Mass Transfer 53, 513–525 (2010)

    Article  MATH  Google Scholar 

  25. Tseng, C., Shyy, W.: Surrogate-based modeling of cryogenic turbulent cavitating flows. CAV2009, Paper No. 77. Proceedings of the 7th International Symposium on Cavitation, August 17–22, 2009, Ann Arbor, Michigan, USA

  26. Li, X., Wang, G., Yu, Z., et al.: Multiphase fluid dynamics and transport processes of low capillary number cavitating flows. Acta Mechanica Sinica 25, 161–172 (2008)

    Article  Google Scholar 

  27. Singhal, A.k., Li, H., Athavale, M.M., et al.: Mathematical basis and validation of the full cavitation model. J. Fluids Eng. 124(3), 617–625 (2002)

    Article  Google Scholar 

  28. Hosangadi, A., Ahuja, V.A.: Numerical of cavitation in cryogenic fluids. Part 2 — new unsteady model for dense cloud. cavitation. 6th International Symposium on Cavitation, Wageningen, Netherlands. Sep. 2006

  29. Hosangadi, A., Ahuja, V., Ungewitter, R.J.: Simulations of rotational cavitation instabilities in the SSME LPFP inducer. In: 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 1–16. 2007

  30. Coutier-Delgosha, R., Fortes-Patella, O., Reboud, J.L.: Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. Journal of Fluids Engineering 125, 38–45 (2003)

    Article  Google Scholar 

  31. Ahuja, V., Hosangadi, A., Arunajatesan, S.: Simulations of cavitating flows using hybrid unstructured meshes. Journal of Fluids Engineering 123, 123–331 (2001)

    Article  Google Scholar 

  32. Shyy, W., Thakur, S.S., Ouyang, H., et al.: Computational Techniques for Complex Transport Phenomenon. Cambridge University Press (2007)

  33. Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flow. Comp. Meth. Appl. Mech. Eng. 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  34. Johansen, S.T., Wu, J.Y., Shyy, W.: Filter based unsteady RANS computational. International Journal of Heat and Fluid Flow 25, 10–21 (2005)

    Article  Google Scholar 

  35. Shyy, W., Udaykumar, H.S., Rao, M.M., et al.: Computational Fluid Dynamics with Moving Boundaries, Taylor & Francis, Washington, DC (1996); Dover, New York (2007)

    Google Scholar 

  36. Francois, M., Shyy, W.: Computations of drop dynamics with the immersed boundary method; Part 1-numerical algorithm and buoyancy induced effect. Numerical Heat Transfer, Part B 44, 101–118 (2003)

    Article  Google Scholar 

  37. Francois, M., Shyy, W.: Computations of drop dynamics with the immersed boundary method; Part 2-drop impact and heat transfer. Numerical Heat Transfer, Part B 44, 119–143 (2003)

    Article  Google Scholar 

  38. Ye, T., Shyy, W., Chung, J.C.: A fixed-grid, sharp-interface method for bubble dynamics and phase change. Journal of Computational Physics 174, 781–815 (2001)

    Article  MATH  Google Scholar 

  39. Wang, G., Zhang, B., Huang, B., et al.: Unsteady dynamics of cloudy cavitating flows around a hydrofoil. CAV2009, Paper No. 9. In: Proceedings of the 7th International Symposium on Cavitation, August 17–22, 2009, Ann Arbor, Michigan, USA

  40. Wang, G., Senocak, I., Shyy, W., et al.: Dynamics of attached turbulent cavitating flows. Progress in Aerospace Sciences 37, 551–581 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jie Wei.

Additional information

The project was supported by the National Natural Science Foundation of China (10802026).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, YJ., Tseng, CC. & Wang, GY. Turbulence and cavitation models for time-dependent turbulent cavitating flows. Acta Mech Sin 27, 473–487 (2011). https://doi.org/10.1007/s10409-011-0475-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-011-0475-3

Keywords

Navigation