Skip to main content
Log in

Effects of thermophoresis particle deposition and of the thermal conductivity in a porous plate with dissipative heat and mass transfer

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Network simulation method (NSM) is used to solve the laminar heat and mass transfer of an electrically-conducting, heat generating/absorbing fluid past a perforated horizontal surface in the presence of viscous and Joule heating problem. The governing partial differential equations are non-dimensionalized and transformed into a system of nonlinear ordinary differential similarity equations, in a single independent variable, η. The resulting coupled, nonlinear equations are solved under appropriate transformed boundary conditions. Computations are performed for a wide range of the governing flow parameters, viz Prandtl number, thermophoretic coefficient (a function of Knudsen number), thermal conductivity parameter, wall transpiration parameter and Schmidt number. The numerical details are discussed with relevant applications. The present problem finds applications in optical fiber fabrication, aerosol filter precipitators, particle deposition on hydronautical blades, semiconductor wafer design, thermo-electronics and problems including nuclear reactor safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Magnetic field strength

C w :

Wall species concentration

c p :

Specific heat capacity of the fluid

C :

Concentration at the free stream

C1, C2, C3:

Empirical constants

C c :

Cunningham coefficient

C m :

Momentum exchange coefficient

C s :

Temperature creeping coefficient

C t :

Temperature jump coefficient

D :

Species (mass) diffusivity

Ec :

Eckert number

f :

Dimensionless stream function

f 0 :

Dimensionless wall transpiration velocity

g :

Acceleration due to gravity

Ha :

Hartmann number

j :

Electrical current (in the network model)

k :

Thermophoretic coefficient

k f :

Thermal conductivity of the fluid

k v :

Thermophoretic diffusivity

Kn :

Knudsen number

l :

Mean free path of the particles

L c :

Characteristic length of the flow field

N :

Number of cells

Pr :

Prandtl number

Q o :

Heat source/sink parameter

Sc :

Schmidt number

T :

Fluid temperature

T :

Free stream temperature

u :

x-direction (axial) fluid velocity

u :

Free stream velocity

ν :

y-direction fluid velocity

V o :

Transpiration velocity at the wall

V T :

Thermophoretic velocity

x :

Axial coordinate

y :

Coordinate normal to the plate

α :

Thermophysical constant dependent on the fluid

β :

Thermal conductivity variation parameter

ν :

Kinematic fluid viscosity

ψ :

Dimensionless stream function parameter

ξ :

Dimensionless axial coordinate

η :

Dimensionless radial coordinate

θ :

Dimensionless temperature

λ p :

Thermal conductivity of the diffused particles

µ:

Dynamic viscosity of the fluid

ρ :

Density

σ :

Electrical conductivity

τ :

Dimensionless thermophoretic parameter

Δ :

Non-dimensional heat source/sink coefficient

Δ t :

Time-step

Δη :

Spatial discretization

ϕ :

Non-dimensional concentration

References

  1. Kremer, D.M., Davis, R.W., Moore, E.F., et al.: An investigation of particle dynamics in a votating disk chemical vapor deposition reactor. J. Electrochemical Society 150(2), 918–922 (2003)

    Article  Google Scholar 

  2. Talbot, L., Cheng, R.K., Schefer, R.W., et al.: Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101(4), 737–758 (1980)

    Article  Google Scholar 

  3. Kanki, T., Luchi, S., Miyazaki, T., et al.: On thermophoresis of relatively large aerosol particles suspended near a plate. J. Colloid. Interf. Sci. 107(2), 418–425 (1985)

    Article  Google Scholar 

  4. He, C., Ahmadi, G.: Particle deposition with thermophoresis in laminar and turbulent duct flows. Aerosol Science and Technology 29(6), 525–546 (1998)

    Article  Google Scholar 

  5. Sasse, A.G.B.M., Nazaroff, W.W., Gadgil, A.J.: Thermophoretic removal of particles from laminar flow between parallel plates and concentric tubes. In: Proc. Am. Assoc. Aerosol. Res. Conf., San Francisco, California, 12–16 October (1992)

  6. Yalamov, Y.I., D’yakonov, S.N.: Thermophoresis of an aggregate of two large solid spheres in contact with each other along their center line: Part I. Thermal problem. High Temperature J. 35, 1 (1997)

    Google Scholar 

  7. Shen, C.: Thermophoretic deposition of particles onto cold surface of bodies in two-dimensional and axi-symmetric flows. J. Colloid Interf. Sci. 127, 104–115 (1988)

    Article  Google Scholar 

  8. Wang, C.C.: Effect of thermophoresis on particle deposition rate from a natural convection flow onto a vertical wavy plate. Int. Communications Heat and Mass Transfer 32(10), 1337–1349 (2005)

    Article  Google Scholar 

  9. Messerer, A., Niessner, R., Pöschl, U.: Thermophoretic deposition ofsoot aerosol particles under experimental conditions relevant for modern diesel engine exhaust gas systems. Aerosol Science 34, 1009–1021 (2003)

    Article  Google Scholar 

  10. Park, H.M., Rosner, D.E.: Boundary layer coagulation effects on the size distribution of thermophoretically deposited particles. Chemical Engineering Science 44(10), 2225–2231 (1989)

    Article  Google Scholar 

  11. Chang, Y.P., Tsai, R., Sui, F.M.: The effect of thermophoresis on particle deposition from a mixed convection flow onto a vertical flat plate. J. Aerosol. Sci. 30, 1363–1378 (1999)

    Article  Google Scholar 

  12. Ahmadi, G., He, C.: Particle deposition with thermophoresis in a laminar duct flow and in a turbulent pipe flow with a sudden expansion. In: Proc. 1996 Annual Technical Meeting. Centre for Advanced Material Processing (CAMP), Lake Placid, New York, May 14–16 (1996)

  13. Greenfield, C., Quairini, G.: A Lagrangian simulation of particle deposition in a turbulent boundary layer in the presence of thermophoresis. Appl. Math. Model 22(10), 759–771 (1998)

    Article  Google Scholar 

  14. Chamkha, A.J., Pop, I.: Effect of thermophoresis particle deposition in free convective boundary layer from a vertical flat plate embedded in porous medium. Int. Comm. Heat Mass Transfer 31, 421–430 (2004)

    Article  Google Scholar 

  15. Duwairi, H.M., Damseh, R.A.: Effect of thermophoresis particle deposition on mixed convection from vertical surfaces embedded in saturated porous medium. Int. J. Numerical Methods Heat Fluid Flow 18(2), 202–216 (2008)

    Article  MATH  Google Scholar 

  16. Damseh, R.A., Tahat, M.S., Benim, A.C.: Nonsimilar solutions of magnetohydrodynamic and thermophoresis particle deposition on mixed convection problem in porous media along a vertical surface with variable wall temperature, Progress in Computational Fluid Dynamics 9(1), 58–65 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mahdy, A., Hady, F.M.: Effect of thermophoretic particle deposition in non-Newtonian free convection flow over a vertical plate with magnetic field effect, Journal of Non-Newtonian Fluid Mechanics 161(1–3), 37–41 (2009)

    Article  MATH  Google Scholar 

  18. Liu, Z., Chen, Z., Shi, M.: Thermophoresis of particles in aqueous solution in micro-channel. Applied Thermal Engineering 29(5–6), 1020–1025 (2009)

    Article  Google Scholar 

  19. Postelnicu, A.: Effects of thermophoresis particle deposition in free convection boundary layer from a horizontal flat plate embedded in a porous medium. Int. J. Heat Mass Transfer 50(15–16), 2981–2985 (2007)

    Article  MATH  Google Scholar 

  20. Dinesh, K.K., Jayaraj, S.: Augmentation of thermophoretic deposition in natural convection flow through a parallel plate channel with heat sources. Int. Communications Heat and Mass Transfer 36, 931–935 (2009)

    Article  Google Scholar 

  21. Grosan, T., Pop, R., Pop, I.: Thermophoretic deposition of particles in fully developed mixed convection flow in a parallelplate vertical channel. Heat Mass Transfer 45, 503–509 (2009)

    Article  Google Scholar 

  22. Tsai, R., Huang, J.S.: Combined effects of thermophoresis and electrophoresis on particle deposition onto a vertical flat plate from mixed convection flow through a porous medium. Chemical Eng. J. 157, 52–59 (2010)

    Article  Google Scholar 

  23. Bég, O.A., Takhar, H.S.: Effects of transverse magnetic field, Prandtl number and Reynolds number on non-Darcy mixed convective flow of an incompressible viscous fluid past a porous vertical flat plate in saturated porous media. Int. J. Energy Research 21, 87–100 (1997)

    Article  Google Scholar 

  24. Tynjala, T., Hajiloo, A., Polashenski, W., et al.: Magnetodissipation in ferrofluids. J. Magnetism and Magnetic Materials 252, 123–125 (2002)

    Article  Google Scholar 

  25. Bég, O.A., Singh, A.K., Takhar, H.S.: Multi-parameter perturbation analysis of unsteady, oscillatory, magneto-convection in porous media with heat source effects. Int. J. Fluid Mechanics Research 32(6), 635–661 (2005)

    Article  Google Scholar 

  26. Zueco, J.: Numerical study of an unsteady free convective magnetohydrodynamic flow of a dissipative fluid along a vertical plate subject to a constant heat flux. Int. J. Engineering Science 44, 1380–1393 (2006)

    Article  MATH  Google Scholar 

  27. Bhargava, R., Rawat, S., Takhar, H.S., et al.: Finite element modeling of pulsatile magneto-biofluid flow and dispersion in a channel. Meccanica J. 42(4), 37–52 (2007)

    MathSciNet  Google Scholar 

  28. Chamkha, A.J., Camille, I.: Effects of heat generation/absorption and thermophoresis on hydromagnetic flow with heat and mass transfer over a flat surface. Int. J. Numerical Methods in Heat and Fluid Flow 10, 432–448 (2000)

    Article  MATH  Google Scholar 

  29. Zueco, J., Campo, A.: Transient radiative transfer between the thick walls of an enclosure using the network simulation method. Applied Thermal Engineering 26, 673–679 (2006)

    Article  Google Scholar 

  30. Zueco, J., Alhama, F.: Simultaneous inverse determination of the temperature-dependent thermophysical properties of fluids using the network simulation method. Int. J Heat Mass Transfer 50, 3234–3243 (2007)

    Article  MATH  Google Scholar 

  31. Zueco, J.: Transient free convection with mass transfer MHD micropolar fluid in a porous plate by the network method. Int. J. Numerical Methods in Fluids 57, 861–876 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Bég, O.A., Zueco, J., Bég, T.A., et al.: NSM analysis of time-dependent nonlinear buoyancy-driven double-diffusive radiative convection flow in non-darcy geological porous media. Acta Mechanica 202, 181–204 (2009)

    Article  MATH  Google Scholar 

  33. Pspice 6.0. Irvine, California 92718. Microsim Corporation, 20 Fairbanks (1994)

  34. White, F.M.: Viscous Fluid Flow. (1st edn.) McGraw-Hill, New York (1974)

    MATH  Google Scholar 

  35. Chamkha, A.J., Mudhaf-Al, A.F., Pop, I.: Effect of heat generation or absorption in thermophoretic free convection boundary layer from a vertical flat plate embedded in a porous medium. Int. Comm. Heat Mass Transfer 33, 1096–1102 (2006)

    Article  Google Scholar 

  36. Schlichting, H.: Boundary-Layer Theory. (7th edn.) McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  37. Hamed A.A., Tabakoff W., Rivir R.B., et al.: Turbine blade surface deterioration by erosion. International Gas Turbine and Aeroengine Congress and Exhibition, Vienna, Autriche 127(3), 445–452 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Zueco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zueco, J., Anwar Bég, O. & López-Ochoa, L.M. Effects of thermophoresis particle deposition and of the thermal conductivity in a porous plate with dissipative heat and mass transfer. Acta Mech Sin 27, 389–398 (2011). https://doi.org/10.1007/s10409-011-0461-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-011-0461-9

Keywords

Navigation