Skip to main content
Log in

Heat transport mechanisms of low Mach number turbulent channel flow with spanwise wall oscillation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Large eddy simulation (LES) of low Mach number compressible turbulent channel flow with spanwise wall oscillation (SWO) is carried out. The flow field is analyzed with emphases laid on the heat transport as well as its relation with momentum transport. When turbulent coherent structures are suppressed by SWO, the turbulent transports are significantly changed, however the momentum and heat transports change in the same manner, which gives the evidence of inherently consistent transport mechanisms between momentum and heat in turbulent boundary layers. The Reynolds analogies of all the flow cases are quite good, which confirms again the fact that the transport mechanisms of momentum and heat are consistent, which gives theoretical support for controlling the wall heat flux control by using the drag reducing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stalio E., Nobile E.: Direct numerical simulation of heat transfer over ribles. Int. J. Heat Fluid Flow 24, 356–371 (2003)

    Article  Google Scholar 

  2. Li F.C., Kawaguchi Y.: Investigation on the characteristics of turbulence transport for momentum and heat in a drag-reducing surfactant solution flow. Phys. Fluids 16(9), 3281–3295 (2004)

    Article  Google Scholar 

  3. Jung W.J., Mangiavacchi N., Akhavan R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)

    Article  Google Scholar 

  4. Laadhari F., Skandaji L., Morel R.: Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids 6(10), 3218–3220 (1994)

    Article  Google Scholar 

  5. Baron A., Quadrio M.: Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55(4), 311–326 (1995)

    Article  Google Scholar 

  6. Orlandi P., Fatica M.: Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech. 343, 43–72 (1997)

    Article  MATH  Google Scholar 

  7. Dhanak M.R., Si C.: On reduction of turbulent wall friction through spanwise wall oscillations. J. Fluid Mech. 383, 175–195 (1999)

    Article  MATH  Google Scholar 

  8. Quadrio M., Sibilla S.: Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424, 217–241 (2000)

    Article  MATH  Google Scholar 

  9. Choi J.I., Xu C.X., Sung H.J.: Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J. 40(5), 842–850 (2002)

    Article  Google Scholar 

  10. Huang, X., Xu, C., Cui, G.X., et al.: The influence of spanwise wall oscillation on the transportation of Reynolds stress. In: Proceedings of 2003’ Fluid Mechanics Youth Workshop, pp. 206–211. Xi’an, Shaanxi, China, 23–25 November, 2003

  11. Huang W., Xu C.X., Cui G.X. et al.: Mechanism of drag reduction by spanwise wall oscillation in turbulent channel flow. Acta Mech. Sin. 36(1), 24–30 (2004) (in Chinese)

    Google Scholar 

  12. Quadrio M., Ricco P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)

    Article  MATH  Google Scholar 

  13. Zhou, D., Ball, K.S.: The Mechanism of turbulent drag reduction by spanwise wall oscillation. In: Proceedings of 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, pp. 1–14. Sacramento California, USA. 9–12 July, 2006

  14. Ricco P., Quadrio M.: Wall-oscillation conditions for drag reduction in turbulent channel flow. Int. J. Heat Fluid Flow 29(4), 891–902 (2008)

    Article  Google Scholar 

  15. Trujillo, S.M., Bogard, D.G., Ball, K.S.: Turbulent boundary layer drag reduction using an oscillating wall. AIAA Paper: AIAA-1997-1870 (1997)

  16. Choi K.S., DeBisschop J.R., Clayton B.R.: Turbulent boundary- layer control by means of spanwise-wall oscillation. AIAA J. 36(7), 1157–1163 (1998)

    Article  Google Scholar 

  17. Choi K.S., Graham M.: Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluid 10(1), 1–9 (1998)

    Article  Google Scholar 

  18. Choi K.S., Clayton B.R.: The mechanism of turbulent drag reduction with wall oscillation. Int. J. Heat Fluid Flow 22, 1–9 (2001)

    Article  Google Scholar 

  19. Cicca G.M.D., Iuso G., Spazzini P.G. et al.: Particle image velocimetry investigation of a turbulent boundary layer manipulated by spanwise wall oscillations. J. Fluid Mech. 467, 41–56 (2002)

    MATH  Google Scholar 

  20. Iuso G., Cicca G.M.D., Onoratob M. et al.: Velocity streak structure modifications induced by flow manipulation. Phys. Fluids 15(9), 2602–2612 (2003)

    Article  Google Scholar 

  21. Ricco P., Quadrio M.: Wall-oscillation conditions for drag reduction in turbulent channel flow. Int. J. Heat Fluid Flow 29(4), 891–902 (2008)

    Article  Google Scholar 

  22. Fang J., Lu L., Shao L.: Large eddy simulation of compressible turbulent channel flow with spanwise wall oscillation. Sci. China Ser. G 52(8), 1233–1243 (2009)

    Article  Google Scholar 

  23. Martin M.P., Piomelli U., Candler G.V.: Subgrid-scale models for compressible large-eddy simulation. Theor. Comput. Fluid Dyn. 13, 361–376 (2000)

    MATH  Google Scholar 

  24. Ducros F., Laporte F., Souléres T. et al.: High-order fluxes for conservative skew-symmetric-like scheme in structured meches: application to compressible flows. J. Comput. Phys. 116, 114–139 (2000)

    Article  Google Scholar 

  25. Kim J., Moin P., Moser R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  26. Coleman G.N., Kim J., Moser R.D.: A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 105, 159–183 (1995)

    Article  Google Scholar 

  27. Coleman, G. N.: Direct simulation of isothermal-wall supersonic channel flow. In: Annual Research Briefs, pp. 313–328. Center for Turbulence Research (1993)

  28. Ringuette M., Wu M., Martin M.P.: Coherent structures in dns of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 59–69 (2008)

    Article  MATH  Google Scholar 

  29. Morkovin, M.V.: Effects of compressibility on turbulent flows. In: Favre, A. (ed.) Mecanique de la Turbulence, pp. 367–380. CNRS, Paris (1962)

  30. Bradshaw P.: Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9, 33–54 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Fang.

Additional information

The project was supported by Key Subjects of the National Natural Science Foundation of China (10732090), the National Natural Science Foundation of China (50476004), and the 111 Project (B08009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, J., Lu, LP. & Shao, L. Heat transport mechanisms of low Mach number turbulent channel flow with spanwise wall oscillation. Acta Mech Sin 26, 391–399 (2010). https://doi.org/10.1007/s10409-010-0343-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-010-0343-6

Keywords

Navigation