Skip to main content
Log in

Morphological stability analysis of vesicles with mechanical–electrical coupling effects

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Using a recently established liquid crystal model for vesicles, we present a theoretical method to analyze the morphological stability of liquid crystal vesicles in an electric field. The coupled mechanical–electrical effects associated with elastic bending, osmotic pressure, surface tension, Maxwell pressure, as well as flexoelectric and dielectric properties of the membrane are taken into account. The first and second variations of the free energy are derived in a compact form by virtue of the surface variational principle. The former leads to the shape equation of a vesicle embedded in an electric field, and the latter allows us to examine the stability of a given vesicle morphology. As an illustrative example, we analyze the stability of a spherical vesicle under a uniform electric field. This study is helpful for understanding and revealing the morphological evolution mechanisms of vesicles in electric fields and some associated phenomena of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McCaig C.D., Rajnicek A.M., Song B., Zhao M.: Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85, 943–978 (2005)

    Article  Google Scholar 

  2. Funk R.H.W., Monsees T.K.: Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. Cell Tissues Organs. 182, 59–78 (2006)

    Article  Google Scholar 

  3. Neumann E.: Electroporation and Electrofusion in Cell Biology. Springer, New York (1989)

    Google Scholar 

  4. Lipowsky R., Sackmann E.: Structure and Dynamics of Membranes. Elsevier, Amsterdam (1995)

    MATH  Google Scholar 

  5. Cevc G., Richardsen H.: Lipid vesicles and membrane fusion. Adv. Drug Deliv. Rev. 38, 207–232 (1999)

    Article  Google Scholar 

  6. Voldman J.: Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng. 8, 425–454 (2006)

    Article  Google Scholar 

  7. Xu G.K., Li Y., Li B., Feng X.Q., Gao H.J.: Self-assembled lipid nanostructures encapsulating nanoparticles in aqueous solution. Soft Matter 5, 3977–3983 (2009)

    Article  Google Scholar 

  8. Shi W.D., Feng X.Q., Gao H.J.: Two dimensional model of vesicle adhesion on curved substrates. Acta Mech. Sin. 22, 529–535 (2006)

    Article  Google Scholar 

  9. Dimova R., Aranda S., Bezlyepkina N., Nikolov V., Riske K.A., Lipowsky R.: A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy. J. Phys. Condens. Matter 18, S1151–1176 (2006)

    Article  Google Scholar 

  10. Dimova R., Riske K.A., Aranda S., Bezlyepkina N., Knorr R.L., Lipowsky R.: Giant vesicles in electric fields. Soft Matter 3, 817–827 (2007)

    Article  Google Scholar 

  11. Riske K.A., Dimova R.: Electric pulses induce cylindrical deformations on giant vesicles in salt solutions. Biophys. J. 91, 1778–1786 (2006)

    Article  Google Scholar 

  12. Rey A.D.: Liquid crystal model of membrane flexoelectricity. Phys. Rev. E 74, 0117101 (2006)

    Article  Google Scholar 

  13. Weaver J.C., Chizmadzhev Y.A.: Theory of electroporation: a review. Bioelectrochem. Bioenerg. 41, 135–160 (1996)

    Article  Google Scholar 

  14. Mitov M.D., Meleard P., Winterhalter M., Angelova M.I., Bothorel P.: Electric-field-dependent thermal fluctuations of giant vesicles. Phys. Rev. E 48, 628–631 (1993)

    Article  Google Scholar 

  15. Peterlin P., Svetina S., Zeks B.: The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer. J. Phys. Condens. Matter 19, 136220 (2007)

    Article  Google Scholar 

  16. Gao L.T., Feng X.Q., Yin Y.J., Gao H.J.: An electromechanical liquid crystal model of vesicles. J. Mech. Phys. Solids 56, 2844–2862 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gao L.T., Feng X.Q., Gao H.J.: A phase field method for simulating morphological evolution of vesicles in electric fields. J. Comput. Phys. 228, 4162–4181 (2009)

    Article  MATH  Google Scholar 

  18. Ou-Yang Z.C., Liu J.X., Xie Y.Z.: Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phase. World Scientific Press, Singapore (1999)

    Google Scholar 

  19. Rosso R., Verani M., Virga E.G.: Second variation of the energy functional for adhering vesicles in two space dimensions. J. Phys. Math. Gen. 36, 12475–12494 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Brinkmann M., Kierfeld J., Lipowsky R.A.: General stability criterion for droplets on structured substrates. J. Phys. Math. Gen. 37, 11547–11573 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tu Z.C., Ou-Yang Z.C.: A geometric theory on the elasticity of bio-membranes. J. Phys. Math. Gen. 37, 11407–11429 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tu Z.C., Ou-Yang Z.C.: Elastic-theory of low-dimensional continua and its applications in bio- and nano-structures. J. Comput. Theor. Nanosci. 5, 422–428 (2008)

    Article  Google Scholar 

  23. Chern S.S., Chen W.H.: Lecture on Differential Geometry. Peking University Press, Beijing (2001)

    Google Scholar 

  24. Helfrich W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C. 28, 693–703 (1973)

    Google Scholar 

  25. de Gennes P.G., Prost J.: The Physics of Liquid Crystals. Oxford University Press, Oxford (1995)

    Google Scholar 

  26. Schwan H.P.: Dielectrophoresis and rotation of cells. In: Neumann, E., Sowers, A.E., Jordan, C.A. (eds) Electroporation and Electrofusion in Cell Biology, pp. 3–21. Plenum Press, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Qiao Feng.

Additional information

The project was supported by the National Natural Science Foundation of China (10972121, 10732050 and 10525210) and 973 Program (2010CB631005).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, L., Liu, Y., Qin, Q.H. et al. Morphological stability analysis of vesicles with mechanical–electrical coupling effects. Acta Mech Sin 26, 5–11 (2010). https://doi.org/10.1007/s10409-009-0295-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0295-x

Keywords

Navigation