Skip to main content
Log in

A hyperbolic Lindstedt–Poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A hyperbolic Lindstedt–Poincaré method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Liénard oscillator is studied in detail, and the present method’s predictions are compared with those of Runge– Kutta method to illustrate its accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen S.H., Chen Y.Y., Sze K.Y.: A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators. J. Sound Vib. 322, 381–392 (2009)

    Article  Google Scholar 

  2. Wang Z.H., Hu H.Y.: A modified averaging scheme with application to the secondary Hopf bifurcation of a delayed van der Pol oscillator. Acta Mech. Sin. 24(4), 449–454 (2008)

    Article  MathSciNet  Google Scholar 

  3. Gan C.B., He S.M.: Studies on structural safety in stochastically excited Duffing oscillator with double potential wells. Acta Mech. Sin. 23(5), 577–583 (2007)

    Article  MathSciNet  Google Scholar 

  4. Xu Z., Chan H.S.Y., Chung K.W.: Separatrices and limit cycles of strongly nonlinear oscillators by the perturbation-incremental method. Nonlinear Dyn. 11, 213–233 (1996)

    Article  MathSciNet  Google Scholar 

  5. Chan H.S.Y., Chung K.W., Xu Z.: Stability and bifurcations of limit cycles by the perturbation-incremental method. J. Sound Vib. 206, 589–604 (1997)

    Article  MathSciNet  Google Scholar 

  6. Chen S.H., Chan J.K.W., Leung A.Y.T.: A perturbation method for the calculation of semi-stable limit cycles of strongly nonlinear oscillators. Commun. Numer. Methods Eng. 16, 301–313 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zhang Y.M., Lu Q.S.: Homoclinic bifurcation of strongly nonlinear oscillators by frequency-incremental method. Commun. Nonlinear Sci. Numer. Simul. 8(1), 1–7 (2000)

    Article  MathSciNet  Google Scholar 

  8. Zhang Q., Wang W., Li W.: Heteroclinic bifurcations of strongly nonlinear oscillator. Chin. Phys. Lett. 25(5), 1905–1907 (2008)

    Article  MathSciNet  Google Scholar 

  9. Belhaq M.: Predicting homoclinic bifurcations in planar autonomous systems. Nonlinear Dyn. 18, 303–310 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Belhaq M., Lakrad F.: Prediction of homoclinic bifurcation: the elliptic averaging method. Chaos Solitons Fract. 11, 2251–2258 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Belhaq M., Fiedler B., Lakrad F.: Homoclinic connections in strongly self-excited nonlinear oscillators: the Melnikov function and the elliptic Lindstedt–Poincaré method. Nonlinear Dyn. 23, 67–86 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  13. Nayfeh A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  14. Merkin J.H., Needham D.J.: On infinite period bifurcations with an application to roll waves. Acta Mech. 60, 1–16 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Chen.

Additional information

The project supported by the National Natural Science Foundation of China (10672193), Sun Yat-sen University (Fu Lan Scholarship) and the University of Hong Kong (CRGC grant).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y.Y., Chen, S.H. & Sze, K.Y. A hyperbolic Lindstedt–Poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators. Acta Mech Sin 25, 721–729 (2009). https://doi.org/10.1007/s10409-009-0276-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0276-0

Keywords

Navigation