Skip to main content
Log in

Manufacturing tolerant topology optimization

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization approach, under- and over-etching is modelled by image processing-based “erode” and “dilate” operators and the optimization problem is formulated as a worst case design problem. Applications of the method to the design of macro structures for minimum compliance and micro compliant mechanisms show that the method provides manufacturing tolerant designs with little decrease in performance. As a positive side effect the robust design formulation also eliminates the longstanding problem of one-node connected hinges in compliant mechanism design using topology optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borel, P.I., Harpøth, A., Frandsen, L.H., Kristensen, M., Jensen, J.S., Shi, P., Sigmund, O.: Topology optimization and fabrication of photonic crystal structures. Opt. Express 12(9), 1996–2001 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1996

    Google Scholar 

  2. Borel P.I., Frandsen L.H., Harpøth A., Kristensen M., Jensen J.S., Sigmund O.: Topology optimised broadband photonic crystal Y-splitter. Electron. Lett. 41(2), 69–71 (2005)

    Article  Google Scholar 

  3. Sigmund O.: On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25(4), 493–524 (1997)

    Article  Google Scholar 

  4. Sigmund O.: Design of multiphysics actuators using topology optimization—Part I: One-material structures. Comput. Methods Appl. Mech. Eng. 190(49-50), 6577–6604 (2001). doi:10.1016/S0045-7825(01)00251-1

    Article  MATH  Google Scholar 

  5. Yin L., Ananthasuresh G.: Design of distributed compliant mechanisms. Mech. Based Des. Struct. Mach. 31(2), 151–179 (2003)

    Article  Google Scholar 

  6. Díaz A.R., Sigmund O.: Checkerboard patterns in layout optimization. Struct. Optim. 10(1), 40–45 (1995)

    Article  Google Scholar 

  7. Jog C.S., Haber R.B.: Stability of finite element models for distributed-parameter optimization and topology design. Comput. Methods Appl. Mech. Eng. 130(3-4), 203–226 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Sigmund O., Petersson J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16(1), 68–75 (1998)

    Article  Google Scholar 

  9. Poulsen T.A.: A new scheme for imposing a minimum length scale in topology optimization. Int. J. Numer. Methods Eng. 57(6), 741–760 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yoon G.H., Kim Y.Y., Bendsøe M.P., Sigmund O.: Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shinkage. Struct. Multidiscip. Optim. 27(3), 139–150 (2004)

    Article  Google Scholar 

  11. Rahmatalla S., Swan C.: Sparse monolithic compliant mechanisms using continuum structural topology optimization. Int. J. Numer. Methods Eng. 62(12), 1579–605 (2005)

    Article  MATH  Google Scholar 

  12. Saxena A. Design of nonlinear springs for prescribed load-displacement functions. J. Mech. Des. 130(8): 081,403 (2008)

    Google Scholar 

  13. Bruns T.E., Tortorelli D.A.: Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190(26-27), 3443–3459 (2001)

    Article  MATH  Google Scholar 

  14. Bourdin B.: Filters in topology optimization. Int. J. Numer. Methods Eng. 50(9), 2143–2158 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guest J., Prevost J., Belytschko T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61(2), 238–254 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sigmund O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33(4-5), 401–424 (2007)

    Article  Google Scholar 

  17. Luo J., Luo Z., Chen S., Tong L., Wang M.Y.: A new level set method for systematic design of hinge-free compliant mechanisms. Comput. Methods Appl. Mech. Eng. 198(2), 318–331 (2008)

    Google Scholar 

  18. Pedersen C.B.W., Buhl T., Sigmund O.: Topology synthesis of large-displacement compliant mechanisms. Int. J. Numer. Methods Eng. 50(12), 2683–2705 (2001)

    Article  MATH  Google Scholar 

  19. Ben-Tal A., Nemirovski A.: Robust truss topology design via semidefinite programming. SIAM J. Optim. 7(4), 991–1016 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen J., Cao Y., Sun H.: Topology optimization of truss structures with systematic reliability constraints under multiple loading cases. Acta Mech. Solida Sin. 12(2), 165–173 (1999)

    Google Scholar 

  21. Christiansen S., Patriksson M., Wynter L.: Stochastic bilevel programming in structural optimization. Struct. Multidiscip. Optim. 21(5), 361–371 (2001)

    Article  Google Scholar 

  22. Maute K., Frangopol D.: Reliability-based design of MEMS mechanisms by topology optimization. Comput. Struct. 81(8-11), 813–824 (2003)

    Article  Google Scholar 

  23. Kharmanda G., Olhoff N., Mohamed A., Lemaire M.: Reliability-based topology optimization. Struct. Multidiscip. Optim. 26(5), 295–307 (2004)

    Article  Google Scholar 

  24. Kang J., Kim C., Wang S.: Reliability-based topology optimization for electromagnetic systems. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 23(3), 715–723 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jung H.S., Cho S.: Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties. Finite Elem. Anal. Des. 41(3), 311–331 (2004)

    Article  MathSciNet  Google Scholar 

  26. Mogami K., Nishiwaki S., Izui K., Yoshimura M., Kogiso N.: Reliability-based structural optimization of frame structures for multiple failure criteria using topology optimization techniques. Struct. Multidiscip. Optim. 32(4), 299–311 (2006)

    Article  Google Scholar 

  27. Kim C., Wang S., Hwang I., Lee J.: Application of reliability-based topology optimization for microelectromechanical systems. AIAA J. 45(12), 2926 (2007)

    Article  Google Scholar 

  28. Seepersad C., Allen J., McDowell D., Mistree F.: Robust design of cellular materials with topological and dimensional imperfections. J. Mech. Des. Trans. ASME 128(6), 1285–1297 (2006)

    Article  Google Scholar 

  29. Guest J., Igusa T.: Structural optimization under uncertain loads and nodal locations. Comput. Methods Appl. Mech. Eng. 198(1), 116–124 (2008). doi:10.1016/j.cma.2008.04.009

    Article  MathSciNet  Google Scholar 

  30. Sigmund, O.: A 99 line topology optimization code written in MATLAB. Struct. Multidiscip. Optim. 21, 120–127 (2001). doi:10.1007/s001580050176. MATLAB code available online at http://www.topopt.dtu.dk

  31. Kirsch U.: Reduced basis approximations of structural displacements for optimal design. AIAA J. 29(10), 1751–1758 (1991)

    Article  MATH  Google Scholar 

  32. Kirsch, U.: Reanalysis of Structures, Solid Mechanics and its Applications, vol. 151. Springer, Heidelberg (2008)

  33. Amir, O., Bendsøe, M.P., Sigmund, O.: Approximate reanalysis in topology optimization. Int. J. Numer. Methods Eng. (2009). doi:10.1002/nme.2536. Publiched online 23 Dec 2008

  34. Pratt W.K.: Digital Image Processing. Wiley, New York (1991)

    MATH  Google Scholar 

  35. Svanberg K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  36. Suzuki, K., Smith, B.W. (eds): Microlithography: Science and Technology. CRC Press, Boca Raton (2007)

    Google Scholar 

  37. Sigmund, O.: Mechanics for a New Millenium, Optimum design of microelectromechanical systems, pp. 505–520. Kluwer, Dordrecht (2001)

  38. Bendsøe, M.P., Sigmund, O.: Topology Optimization—Theory, Methods and Applications, XIV+370 pp. Springer, Heidelberg (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Sigmund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigmund, O. Manufacturing tolerant topology optimization. Acta Mech Sin 25, 227–239 (2009). https://doi.org/10.1007/s10409-009-0240-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0240-z

Keywords

Navigation