Skip to main content
Log in

A version of Hill’s lemma for Cosserat continuum

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

On the basis of Hill’s lemma for classical Cauchy continuum, a version of Hill’s lemma for micro–macro homogenization modeling of heterogeneous Cosserat continuum is presented in the frame of average-field theory. The admissible boundary conditions required to prescribe on the representative volume element for the modeling are extracted and discussed to ensure the satisfaction of Hill–Mandel energy condition and the first-order average field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  2. Qu J., Cherkaoui M.: Fundamentals of Micromechanics of Solids. Wiley, Hoboken (2006)

    Book  Google Scholar 

  3. Chen S.H., Wang T.: Advances in strain gradient theory. Adv. Mech. 33(2), 207–216 (2003) (in Chinese)

    Google Scholar 

  4. Zhang H.W., Wang H., Liu Z.G.: Quadrilateral isoparametric finite elements for plane elastic Cosserat bodies. Acta Mech. Sin. 21(4), 388–394 (2005)

    Article  Google Scholar 

  5. Dai T.M.: Renewal of basic laws and principles for polar continuum theories (XI)—consistency problems. Appl. Math. Mech. 28(2), 147–155 (2007)

    Article  MathSciNet  Google Scholar 

  6. Li X.K., Tang H.X.: A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modeling of strain localization. Comp. Struct. 83, 1–10 (2005)

    Article  Google Scholar 

  7. Suquet P.M.: Local and global aspects in the mathematical theory of plasticity. In: Sawczuk, A., Bianchi, G. (eds) Plasticity Today: Modelling, Methods and Applications, pp. 279–310. Elsevier, London (1985)

    Google Scholar 

  8. Michel J.C., Moulinec C., Suquet P.M.: Effective properties of composite materials with periodic macrostructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172, 109–143 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hu G.K., Zheng Q.S., Huang Z.P.: Micromechanics methods for effective elastic properties of composite materials. Adv. Mech. 31(3), 361–393 (2001) (in Chinese)

    Google Scholar 

  10. Forest S., Sab K.: Cosserat overall modeling of heterogeneous materials. Mech. Res. Comm. 25(4), 449–454 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Forest S., Dendievel R., Canova G.R.: Estimating the overall properties of heterogeneous Cosserat materials. Model. Simul. Mater. Sci. Eng. 7, 829–840 (1999)

    Article  Google Scholar 

  12. Yuan X., Tomita Y.: Effective properties of Cosserat composites with periodic microstructure. Mech. Res. Comm. 28(3), 265–270 (2001)

    Article  MATH  Google Scholar 

  13. Hu G.K., Liu X.N., Lu T.J.: A variational method for non-linear micopolar composites. Mech. Mater. 37, 407–425 (2005)

    Article  Google Scholar 

  14. Chang C.S., Kuhn M.R.: On virtual work and stress in granular media. Int. J. Solids Struct. 42, 3773–3793 (2005)

    Article  MATH  Google Scholar 

  15. Onck P.R.: Cosserat modeling of cellular solids. C. R. Mecanique 330, 717–722 (2002)

    Article  MATH  Google Scholar 

  16. Van der Sluis O., Schreurs P.J.G., Brekelmans W.A.M., Meijer H.E.H.: Overall behaviour of heterogeneous elastoviscoplastic materials: effect of microstructural modeling. Mech. Mater. 32, 449–462 (2000)

    Article  Google Scholar 

  17. Terada K., Hori M., Kyoya T., Kikuchi N.: Simulation of the multi-scale convergence in computational homogenization approach. Int. J. Solids Struct. 37, 2285–2311 (2000)

    Article  MATH  Google Scholar 

  18. Kouznetsova V., Brekelmans W.A.M., Baaijens F.P.T.: An approach to micro–macro modeling of heterogeneous materials. Comput. Mech. 27, 37–48 (2001)

    Article  MATH  Google Scholar 

  19. Kouznetsova V., Geers M.G.D., Brekelmans W.A.M.: Multi-scale constitutive modeling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Meth. Eng. 54, 1235–1260 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xikui Li.

Additional information

This project was supported by the National Natural Science Foundation of China (90715011, 10672033 and 10590354) and the National Key Basic Research and Development Program (2002CB412709), and the Australia Research Council through the ARC International Fellowship Offered at University of Newcastle (LX0666274).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Liu, Q. A version of Hill’s lemma for Cosserat continuum. Acta Mech Sin 25, 499–506 (2009). https://doi.org/10.1007/s10409-009-0231-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0231-0

Keywords

Navigation