Skip to main content
Log in

A natural neighbour method based on Fraeijs de Veubeke variational principle for materially non-linear problems

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The natural neighbour method can be considered as one of many variants of the meshless methods. In the present paper, a new approach based on the Fraeijs de Veubeke (FdV) functional, which is initially developed for linear elasticity, is extended to the case of geometrically linear but materially non-linear solids. The new approach provides an original treatment to two classical problems: the numerical evaluation of the integrals over the domain A and the enforcement of boundary conditions of the type u i  =  ũ i on S u . In the absence of body forces (F i  =  0), it will be shown that the calculation of integrals of the type \({\int\nolimits_A \cdot {\rm d}A}\) can be avoided and that boundary conditions of the type u i  =  ũ i on S u can be imposed in the average sense in general and exactly if ũ i is linear between two contour nodes, which is obviously the case for ũ i  =  0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cuteo E., Sukumar N., Calvo B., Cegonino J., Doblare M.: Overview and recent advances in natural neighbour Galerkin methods. Arch. Comput. Methods Eng. 10(4), 307–384 (2003)

    Article  Google Scholar 

  2. Yoo J., Moran B., Chen J.S.: Stabilized conforming nodal integration in the natural element method. Int. J. Numer. Methods Eng. 60, 861–890 (2004)

    Article  MATH  Google Scholar 

  3. Sukumar N., Moran B., Semenov Y., Belikov B.: Natural neighbor Galerkin methods. Int. J. Numer. Methods Eng. 50, 1–27 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sukumar N., Moran B., Belytschko T.B.: The natural element method in solid mechanics. Int. J. Numer. Methods Eng. 43, 839–887 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lancaster P., Salkauskas K.: Curve and surface fitting: an introduction. Academic Press, London (1990)

    Google Scholar 

  6. Atluri S.N., Kim H.G., Cho J.Y.: A critical assessment of the truly meshless local Petrov-Galerkin and local boundary integral equation methods. Comput. Mech. 24, 348–372 (1999)

    Article  MATH  Google Scholar 

  7. Atluri S.N., Zhu T.: New concepts in meshless methods. Int. J. Numer. Methods Eng. 47, 537–556 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen J.S., Wu C.T., Yoon S., You Y.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50, 435–466 (2001)

    Article  MATH  Google Scholar 

  9. Yvonnet J., Ryckelynck D., Lorong Ph., Chinesta F.: A new extension of the natural element method for non-convex and discontinuous domains: the constrained natural element method (c-nem). Int. J. Numer. Methods Eng. 60, 1451–1474 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yvonnet, J.: Nouvelles approches sans maillage basées sur la méthode des éléments naturels pour la simulation numérique des procédés de mise en forme. [Ph.D. Thesis], Ecole Nationale Supérieure d’Arts et Métiers (2004)

  11. Gonzalez D., Cueto E., Martinez M.A., Doblare M.: Numerical integration in natural neighbour Galerkin methods. Int. J. Numer. Methods Eng. 60, 2077–2104 (2004)

    Article  MATH  Google Scholar 

  12. Yagawa, G., Matsubara, H.: Enriched element method and its application to solid mechanics. In: Computational methods in Engineering and Science 2006, pp. 15–18. Proc. EPMESC X, Aug. 21–23, Tsinghua University Press, Springer

  13. Nayroles B., Touzot G., Villon P.: Generalizing the finite element method: diffuse approximation and diffuse elements. J. Comput. Mech. 10, 307–318 (1992)

    Article  MATH  Google Scholar 

  14. Kronghauz Y., Belytchko T.: Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput. Methods Appl. Mech. Eng. 131, 133–145 (1996)

    Article  Google Scholar 

  15. Belytchko T., Gu L., Lu Y.Y.: Fracture and crack growth by element free Galerkin methods. Model. Simul. Mater. Sci. Eng. 2, 519–534 (1994)

    Article  Google Scholar 

  16. Gavette L., Benito J.J., Falcon S., Ruiz A.: Penalty functions in constrained variational principles for element free Galerkin method. Eur. J. Mech. A/Solids 19, 699–720 (2000)

    Article  MathSciNet  Google Scholar 

  17. Belytchko T., Lu Y.Y., Gu L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  Google Scholar 

  18. Lu Y.Y., Belytchko T., Gu L.: A new implementation of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 113, 397–414 (1994)

    Article  MATH  Google Scholar 

  19. Kaljevic I., Saigal S.: An improved element-free Galerkin formulation. Int. J. Numer. Methods Eng. 40, 2953–2974 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ghosh S., Moorthy S.: Particle fracture simulation in non-uniform microstructures of metal-matrix composites. Acta Mater. 46, 965–982 (1998)

    Article  Google Scholar 

  21. Moorthy S., Ghosh S.: A Voronoi cell finite element model for particle cracking in elastic-plastic composite materials. Comput. Methods Appl. Mech. Eng. 151, 377–400 (1998)

    Article  MATH  Google Scholar 

  22. Hu C., Bai J., Ghosh S.: Micromechanical and macroscopic models of ductile fracture in particle reinforced metallic materials. Model. Simul. Mater. Sci. Eng. 15(4), 5377–5392 (2007)

    Article  Google Scholar 

  23. Zhang H.W., Wang H., Chen B.S., Xie Z.Q.: Analysis of Cosserat materials with Voronoi cell finite element method and parametric variational principle. Comput. Methods Appl. Mech. Eng. 197, 741–755 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vu-Quoc L., Tan X.G.: Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comput. Methods Appl. Mech. Eng. 192, 975–1016 (2003)

    Article  MATH  Google Scholar 

  25. Herrmann, L.R., Roms, R.M.: A reformulation of the elastic field equations in terms of displacements valid for all admissible values of Poisson’s ratio. Trans. ASME, Int. J. Appl. Mech. 140–141 (1964)

  26. Fraeijs de Veubeke, B. M.: Diffusion des inconnues hyperstatiques dans les voilures à longerons couplés. Bull. Serv. Technique de l’Aéronautique N° 24, Imprimerie Marcel Hayez, Bruxelles, 56 (1951)

  27. Belikov V.V., Ivanov V.D., Kontorovich V.K., Korytnik S.A., Semonov A.Y.: The non Sibsonian interpolation: a new method of interpolation of the values of a function on an arbitrary set of points. Comput. Math. Math. Physics 37(1), 9–15 (1997)

    Google Scholar 

  28. Hiyoshi H., Sugihara K.: Two generations of an interpolant based on Voronoi diagrams. Int. J. Shape Modelling 5(2), 219–231 (1999)

    Article  Google Scholar 

  29. Sibson R.: A vector identity for the Dirichlet tessellation. Math. Proc. Camb. Philos. Soc. 87, 151–155 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rossi, B., Pascon, F., Habraken, A.M.: Theoretical and numerical evaluation of residual stresses in thin-walled sections, Report N° AG2007-02/01, ArGEnCo Department, Division of Mechanics of Solids, Fluids and Structures (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Cescotto, S. & Rossi, B. A natural neighbour method based on Fraeijs de Veubeke variational principle for materially non-linear problems. Acta Mech Sin 25, 83–93 (2009). https://doi.org/10.1007/s10409-008-0200-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0200-z

Keywords

Navigation