Skip to main content
Log in

Dynamic torsional buckling of multi-walled carbon nanotubes embedded in an elastic medium

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper the dynamic torsional buckling of multi-walled carbon nanotubes (MWNTs) embedded in an elastic medium is studied by using a continuum mechanics model. By introducing initial imperfections for MWNTs and applying the preferred mode analytical method, a buckling condition is derived for the buckling load and associated buckling mode. In particular, explicit expressions are obtained for embedded double-walled carbon nanotubes (DWNTs). Numerical results show that, for both the DWNTs and embedded DWNTs, the buckling form shifts from the lower buckling mode to the higher buckling mode with increasing the buckling load, but the buckling mode is invariable for a certain domain of the buckling load. It is also indicated that, the surrounding elastic medium generally has effect on the lower buckling mode of DWNTs only when compared with the corresponding one for individual DWNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S.: Helical microtubes of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Pantano A., Parks D.M., Boyce M.C.: Mechanics of deformation of single- and multi-walled carbon nanotubes. J. Mech. Phys. Solids 52, 789–821 (2004)

    Article  MATH  Google Scholar 

  3. Chang, T.C., Guo, W.L., Guo, X.M.: Buckling of multiwalled carbon nanotubes under axial compression and bending via a molecular mechanics model. Phys. Rev. B 72, 064101-1-064101-11 (2005)

    Google Scholar 

  4. He X.Q., Kitipornchai S., Liew K.M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005)

    Article  MATH  Google Scholar 

  5. Wang, X., Yang, H.K.: Bending stability of multiwalled carbon nanotubes. Phys. Rev. B 73, 085409-1-085409-8 (2006)

    Google Scholar 

  6. Cao, G.X., Chen, X.: Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method. Phys. Rev. B 73, 155435-1-155435-10 (2006)

    Google Scholar 

  7. Jiang L.Y., Huang Y., Jiang H., Ravichandran G., Gao H., Hwang K.C., Liu B.: A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J. Mech. Phys. Solids 54, 2436–2452 (2006)

    Article  MATH  Google Scholar 

  8. Xie G.Q., Han X., Liu G.R., Long S.Y.: Effect of small size-scale on the radial buckling pressure of a simply supported multi-walled carbon nanotube. Smart Mater. Struct. 15, 1143–1149 (2006)

    Article  Google Scholar 

  9. Guduru P.R., Xia Z.: Shell buckling of imperfect multiwalled carbon nanotubes-experiments and analysis. Exp. Mech. 47(1), 153–161 (2007)

    Article  Google Scholar 

  10. Wu J., Hwang K.C., Huang Y.: An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes. J. Mech. Phys. Solids 56, 279–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yakobson B.I., Brabec C.J., Bernholc J.: Nanomechanics of carbon tubes: instability beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)

    Article  Google Scholar 

  12. Ru C.Q.: Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J. Appl. Phys. 87, 7227–7231 (2000)

    Article  Google Scholar 

  13. Huang Y., Wu J., Hwang K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006)

    Article  Google Scholar 

  14. Peng J., Wu J., Hwang K.C., Song J., Huang Y.: Can a single-wall carbon nanotube be modeled as a thin shell? J. Mech. Phys. Solids (2008), doi:10.1016/j.jmps.2008.01.004

    MathSciNet  Google Scholar 

  15. Bower C., Rosen R., Jin L., Han J., Zhou O.: Deformation of carbon nanotubes in nanotube-polymer composites. Appl. Phys. Lett. 74, 3317–3319 (1999)

    Article  Google Scholar 

  16. Ru C.Q.: Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium. J. Mech. Phys. Solids 49, 1265–1279 (2001)

    Article  MATH  Google Scholar 

  17. Wang C.Y., Ru C.Q., Mioduchowski A.: Elastic buckling of multiwall carbon nanotubes under high pressure. J. Nanosci. Nanotechnol. 3, 199–208 (2003)

    Article  Google Scholar 

  18. Lu Y.J., Wang X.: Combined torsional buckling of multi-walled carbon nanotubes. J. Phys. D: Appl. Phys. 39, 3380–3387 (2006)

    Article  Google Scholar 

  19. Wang C.Y., Ru C.Q., Mioduchowski A.: Axially compressed buckling of pressured multiwall carbon nanotubes. Int. J. Solids Struct. 40, 3893–3911 (2003)

    Article  MATH  Google Scholar 

  20. Ni, B., Sinnott, S.B., Mikulski, P.T., Harrison, J.A.: Compression of carbon nanotubes filled with C60, CH4, or Ne: predictions from molecular dynamics simulations. Phys. Rev. Lett. 88, 205505-1-205505-4 (2002)

    Google Scholar 

  21. Han Q., Lu G.X.: Torsional buckling of a double-walled carbon nanotube embedded in an elastic medium. Eur. J. Mech. A-Solids 22, 875–883 (2003)

    Article  MATH  Google Scholar 

  22. Wang X., Lu G., Lu Y.J.: Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading. Int. J. Solids Struct. 44, 336–351 (2007)

    Article  MATH  Google Scholar 

  23. Sun C.Q., Liu K.X.: Combined torsional buckling of multi-walled carbon nanotubes coupling with radial pressures. J. Phys. D: Appl. Phys. 40, 4027–4033 (2007)

    Article  Google Scholar 

  24. Sun C., Liu K.: Combined torsional buckling of multi-walled carbon nanotubes coupling with axial loading and radial pressures. Int. J. Solids Struct. 45, 2128–2139 (2008)

    Article  MATH  Google Scholar 

  25. Shen H.S., Zhang C.L.: Postbuckling of double-walled carbon nanotubes with temperature dependent properties and initial defects under combined axial and radial mechanical loads. Int. J. Solids Struct. 44, 1461–1487 (2007)

    Article  MATH  Google Scholar 

  26. Sun C., Liu K., Lu G.: Dynamic torsional buckling of an embedded double-walled carbon nanotube. Key Eng. Mater. 334–335, 745–748 (2007)

    Article  Google Scholar 

  27. Lindberg H.E.: Impact buckling of a thin bar. ASME J. Appl. Mech. 32(2), 315–322 (1965)

    Google Scholar 

  28. Lindberg H.E., Herbert R.E.: Dynamic buckling of a thin cylindrical shell under axial impact. ASME J. Appl. Mech. 32(3), 105–112 (1966)

    Google Scholar 

  29. Girifalco L.A., Lad R.A.: Energy of cohesion, compressibility, and the potential energy functions of the graphite system. J. Chem. Phys. 25, 693–697 (1956)

    Article  Google Scholar 

  30. Saito R., Matsuo R., Kimura T., Dresselhaus G., Dresselhaus M.S.: Anomalous potential barrier of double-wall carbon nanotube. Chem. Phys. Lett. 348, 187–193 (2001)

    Article  Google Scholar 

  31. Wang C.Y., Ru C.Q., Mioduchowski A.: Applicability and limitations of simplified elastic shell equations for carbon nanotubes. ASME J. Appl. Mech. 71, 622–631 (2004)

    Article  MATH  Google Scholar 

  32. Zhang Y.C., Wang X.: Thermal effects on interfacial stress transfer characteristics of carbon nanotubes/polymer composites. Int. J. Solids Struct. 42, 5399–5412 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaixin Liu.

Additional information

The Project supported by the National Natural Science Foundation of China (10572002 and 10732010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Liu, K. & Lu, G. Dynamic torsional buckling of multi-walled carbon nanotubes embedded in an elastic medium. Acta Mech Sin 24, 541–547 (2008). https://doi.org/10.1007/s10409-008-0174-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0174-x

Keywords

Navigation