Skip to main content
Log in

Schlafbezogene Atmungsstörungen, Hypoxämie und der Zusammenhang mit dem Lungenkarzinom

Sleep-disordered breathing, hypoxemia and the association with lung cancer

  • Leitthema
  • Published:
Zeitschrift für Pneumologie Aims and scope

Zusammenfassung

Schlafbezogene Atmungsstörungen (SBAS) sowie chronische Lungenerkrankungen haben in der Allgemeinbevölkerung eine zunehmende und bereits hohe Prävalenz. Sowohl die SBAS als auch chronische Lungenerkrankungen verursachen hypoxämische Zustände bei den betroffenen Patienten, was zu pathophysiologischen Veränderungen führt, für die Zusammenhänge mit kardiovaskulären Erkrankungen bekannt sind. Auch für eine erhöhte Inzidenz von Malignomen per se und speziell das Lungenkarzinom sind chronische Lungenerkrankungen wie die COPD (chronisch obstruktive Lungenerkrankung), aber auch SBAS als assoziiert beschrieben. Die bisher bekannten Zusammenhänge und pathophysiologischen Mechanismen sollen in diesem Beitrag dargestellt werden. Die SBAS können sich in unterschiedlichen Formen als intermittierende und/oder chronische Hypoxämie manifestieren. Diese Hypoxämiephänotypen haben Auswirkungen auf vaskuläre Wachstumsfaktoren und auf die Tumorzellproliferation. Die Exposition humaner Lungenkarzinomzellen (menschliches Adenokarzinom Zelllinie: H1437, menschliches Plattenepithelkarzinom Zelllinie: H520) gegenüber einer Hypoxämie führt zu signifikant erhöhten Proliferationsraten mit noch unbekannten Effekten auf das Therapieansprechen und den Langzeitverlauf. Ebenso sind die klinischen Effekte von SBAS und Hypoxämiephänotypen auf den unmittelbaren postoperativen Verlauf nach anatomischen Lungenresektionen bei Lungenkarzinompatienten bislang ungeklärt.

Abstract

Sleep-disordered breathing (SDB) and chronic lung diseases have an increasing and even now high prevalence in the general population. Both SDB and chronic lung diseases cause hypoxemic states in affected patients, leading to pathophysiological changes known to be associated with cardiovascular diseases. Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and SDB have also been described as being associated with an increased incidence of malignancies per se and especially lung cancer. This article reports on the previously known associations and pathophysiological mechanisms. The SDBs can be manifested in different forms as intermittent and/or chronic hypoxemia. These hypoxemia phenotypes affect vascular growth factors and tumor cell proliferation. Exposure of human lung carcinoma cells (human adenocarcinoma cell line H1437, human squamous cell carcinoma cell line H520) to hypoxemia leads to significantly increased proliferation rates with as yet unknown effects on the response to treatment and the long-term course. Likewise, the clinical effects of SDB and hypoxemia phenotypes on the immediate postoperative course after anatomical lung resections in lung cancer patients have not yet been clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Heinzer R, Vat S, Marques-Vidal P et al (2015) Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med 3:310–318. https://doi.org/10.1016/s2213-2600(15)00043-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sateia MJ (2014) International classification of sleep disorders-third edition: highlights and modifications. Chest 146:1387–1394. https://doi.org/10.1378/chest.14-0970

    Article  PubMed  Google Scholar 

  3. Peppard PE, Young T, Barnet JH et al (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177:1006–1014. https://doi.org/10.1093/aje/kws342

    Article  PubMed  PubMed Central  Google Scholar 

  4. Punjabi NM (2008) The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5:136–143. https://doi.org/10.1513/pats.200709-155MG

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chan MTV, Wang CY, Seet E et al (2019) Association of unrecognized obstructive sleep apnea with postoperative cardiovascular events in patients undergoing major noncardiac surgery. JAMA 321:1788–1798. https://doi.org/10.1001/jama.2019.4783

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tafelmeier M, Luft L, Zistler E et al (2021) Central sleep apnea predicts pulmonary complications after cardiac surgery. Chest 159:798–809. https://doi.org/10.1016/j.chest.2020.07.080

    Article  PubMed  Google Scholar 

  7. Tafelmeier M, Knapp M, Lebek S et al (2019) Predictors of delirium after cardiac surgery in patients with sleep disordered breathing. Eur Respir J. https://doi.org/10.1183/13993003.00354-2019

    Article  PubMed  Google Scholar 

  8. Erman MK, Stewart D, Einhorn D et al (2007) Validation of the ApneaLink for the screening of sleep apnea: a novel and simple single-channel recording device. J Clin Sleep Med 3:387–392

    Article  Google Scholar 

  9. Linz D, Colling S, Nussstein W et al (2018) Nocturnal hypoxemic burden is associated with epicardial fat volume in patients with acute myocardial infarction. Sleep Breath 22:703–711. https://doi.org/10.1007/s11325-017-1616-0

    Article  PubMed  Google Scholar 

  10. Khoshkish S, Hohl M, Linz B et al (2018) The association between different features of sleep-disordered breathing and blood pressure: a cross-sectional study. J Clin Hypertens (Greenwich) 20:575–581. https://doi.org/10.1111/jch.13202

    Article  Google Scholar 

  11. Linz D, Malfertheiner MV, Werner N et al (2021) Nocturnal hypoxemic burden during positive airway pressure treatment across different central sleep apnea etiologies. Sleep Med 79:62–70. https://doi.org/10.1016/j.sleep.2021.01.007

    Article  PubMed  Google Scholar 

  12. Baumert M, Immanuel SA, Stone KL et al (2020) Composition of nocturnal hypoxaemic burden and its prognostic value for cardiovascular mortality in older community-dwelling men. Eur Heart J 41:533–541. https://doi.org/10.1093/eurheartj/ehy838

    Article  PubMed  Google Scholar 

  13. Campos-Rodriguez F, Martinez-Garcia MA, Martinez M et al (2013) Association between obstructive sleep apnea and cancer incidence in a large multicenter Spanish cohort. Am J Respir Crit Care Med 187:99–105. https://doi.org/10.1164/rccm.201209-1671OC

    Article  PubMed  Google Scholar 

  14. Nieto FJ, Peppard PE, Young T et al (2012) Sleep-disordered breathing and cancer mortality: results from the Wisconsin sleep cohort study. Am J Respir Crit Care Med 186:190–194. https://doi.org/10.1164/rccm.201201-0130OC

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cheong AJY, Tan BKJ, Teo YH et al (2021) Obstructive sleep apnea and lung cancer: a systematic review and meta-analysis of 4,885,518 participants. Ann Am Thorac Soc. https://doi.org/10.1513/AnnalsATS.202108-960OC

    Article  Google Scholar 

  16. Dreher M, Kruger S, Schulze-Olden S et al (2018) Sleep-disordered breathing in patients with newly diagnosed lung cancer. BMC Pulm Med 18:72. https://doi.org/10.1186/s12890-018-0645-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dutkowska AE, Antczak A (2016) Comorbidities in lung cancer. Pneumonol Alergol Pol 84:186–192. https://doi.org/10.5603/PiAP.2016.0022

    Article  PubMed  Google Scholar 

  18. Almendros I, Montserrat JM, Ramírez J et al (2012) Intermittent hypoxia enhances cancer progression in a mouse model of sleep apnoea. Eur Respir J 39:215–217. https://doi.org/10.1183/09031936.00185110

    Article  CAS  PubMed  Google Scholar 

  19. Martinez-Garcia MA, Martorell-Calatayud A, Nagore E et al (2014) Association between sleep disordered breathing and aggressiveness markers of malignant cutaneous melanoma. Eur Respir J 43:1661–1668. https://doi.org/10.1183/09031936.00115413

    Article  PubMed  Google Scholar 

  20. Driendl S, Arzt M, Zimmermann CS et al (2021) Sleep apnoea and incident malignancy in type 2 diabetes. ERJ Open Res. https://doi.org/10.1183/23120541.00036-2021

    Article  PubMed  PubMed Central  Google Scholar 

  21. Almendros I, Montserrat JM, Torres M et al (2012) Obesity and intermittent hypoxia increase tumor growth in a mouse model of sleep apnea. Sleep Med 13:1254–1260. https://doi.org/10.1016/j.sleep.2012.08.012

    Article  PubMed  Google Scholar 

  22. Somers VK, Dyken ME, Clary MP et al (1995) Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96:1897–1904. https://doi.org/10.1172/jci118235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng J, Almendros I, Wang Y et al (2015) Reduced NADPH oxidase type 2 activity mediates sleep fragmentation-induced effects on TC1 tumors in mice. OncoImmunology 4:e976057. https://doi.org/10.4161/2162402X.2014.976057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hakim F, Wang Y, Zhang SX et al (2014) Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling. Cancer Res 74:1329–1337. https://doi.org/10.1158/0008-5472.CAN-13-3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miao ZF, Zhao TT, Wang ZN et al (2014) Influence of different hypoxia models on metastatic potential of SGC-7901 gastric cancer cells. Tumour Biol 35:6801–6808. https://doi.org/10.1007/s13277-014-1928-7

    Article  CAS  PubMed  Google Scholar 

  26. Toffoli S, Michiels C (2008) Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J 275:2991–3002. https://doi.org/10.1111/j.1742-4658.2008.06454.x

    Article  CAS  PubMed  Google Scholar 

  27. Lévy P, Kohler M, McNicholas WT et al (2015) Obstructive sleep apnoea syndrome. Nat Rev Dis Primers 1:15015. https://doi.org/10.1038/nrdp.2015.15

    Article  PubMed  Google Scholar 

  28. Federico A, Morgillo F, Tuccillo C et al (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121:2381–2386. https://doi.org/10.1002/ijc.23192

    Article  CAS  PubMed  Google Scholar 

  29. Yamauchi M, Nakano H, Maekawa J et al (2005) Oxidative stress in obstructive sleep apnea. Chest 127:1674–1679. https://doi.org/10.1378/chest.127.5.1674

    Article  CAS  PubMed  Google Scholar 

  30. Prabhakar NR, Semenza GL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 92:967–1003. https://doi.org/10.1152/physrev.00030.2011

    Article  CAS  PubMed  Google Scholar 

  31. Yuan G, Nanduri J, Bhasker CR et al (2005) Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem 280:4321–4328. https://doi.org/10.1074/jbc.M407706200

    Article  CAS  PubMed  Google Scholar 

  32. Yuan G, Nanduri J, Khan S et al (2008) Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol 217:674–685. https://doi.org/10.1002/jcp.21537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 24:97–106. https://doi.org/10.1152/physiol.00045.2008

    Article  CAS  Google Scholar 

  34. Melincovici CS, Boşca AB, Şuşman S et al (2018) Vascular endothelial growth factor (VEGF)—key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 59:455–467

    PubMed  Google Scholar 

  35. Kaczmarek E, Bakker JP, Clarke DN et al (2013) Molecular biomarkers of vascular dysfunction in obstructive sleep apnea. PLoS One 8:e70559. https://doi.org/10.1371/journal.pone.0070559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schulz C, Gandara D, Berardo CG et al (2019) Comparative efficacy of second- and subsequent-line treatments for metastatic NSCLC: a fractional polynomials network meta-analysis of cancer immunotherapies. Clin Lung Cancer 20:451–460.e5. https://doi.org/10.1016/j.cllc.2019.06.017

    Article  PubMed  Google Scholar 

  37. Marhuenda E, Campillo N, Gabasa M et al (2019) Effects of sustained and intermittent hypoxia on human lung cancer cells. Am J Respir Cell Mol Biol 61:540–544. https://doi.org/10.1165/rcmb.2018-0412LE

    Article  CAS  PubMed  Google Scholar 

  38. Gharib SA, Seiger AN, Hayes AL et al (2014) Treatment of obstructive sleep apnea alters cancer-associated transcriptional signatures in circulating leukocytes. Sleep 37:709–714. https://doi.org/10.5665/sleep.3574 (714A–714T)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tafelmeier M, Weizenegger T, Ripfel S et al (2018) Postoperative complications after elective coronary artery bypass grafting surgery in patients with sleep-disordered breathing. Clin Res Cardiol 107:1148–1159. https://doi.org/10.1007/s00392-018-1289-0

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wiest.

Ethics declarations

Interessenkonflikt

C. Wiest, M. Arzt, C. Schulz, S. Stadler, M. Ried und M.V. Malfertheiner geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

M. Arzt, Regensburg

C. Schöbel, Essen

figure qr

QR-Code scannen & Beitrag online lesen

Die Redaktion wurde wie folgt geändert:

M. Arzt, Regensburg

C. Schöbel, Essen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiest, C., Arzt, M., Schulz, C. et al. Schlafbezogene Atmungsstörungen, Hypoxämie und der Zusammenhang mit dem Lungenkarzinom. Z Pneumologie 19, 224–229 (2022). https://doi.org/10.1007/s10405-022-00449-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-022-00449-x

Schlüsselwörter

Keywords

Navigation