Skip to main content

Advertisement

Log in

Personalisierte Medizin bei pulmonaler Hypertonie

Personalized medicine in pulmonary hypertension

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Die pulmonale Hypertonie ist eine heterogene Gruppe von Erkrankungen, welche über den erhöhten mittleren pulmonal-arteriellen Druck definiert ist. Die personalisierte Medizin zielt darauf ab, die Therapie individuell auf den Patienten und seine Krankheitscharakteristika abzustimmen und so die Therapieansprache und das Ergebnis zu verbessern. Im vorliegenden Artikel werden aktuelle und zukünftige Ansätze zur Implementierung der personalisierten Medizin bei der pulmonalen Hypertonie dargestellt. Durch die Anwendung der ätiologischen Klassifikation, die Vasoreagibilitätstestung, die Risikostratifizierung, die genetische Testung, aber auch die Berücksichtigung klinischer Charakteristika wie Alter und Geschlecht wird eine Personalisierung der Therapie bereits heute angewendet. In Zukunft könnten auch pharmakogenetische Untersuchungen helfen, das Ansprechen auf bestehende und neue medikamentöse Therapien vorherzusagen. Mit Hilfe der „Omics“-Technologien werden heute neue Erkenntnisse nicht nur im Bereich des Genoms und Transkriptoms sondern auch des Epigenoms, Metaboloms und Proteoms gewonnen. Diese könnten künftig eine weitere Unterteilung der Patientengruppen und die Entwicklung neuer personalisierter Therapien erlauben.

Abstract

Pulmonary hypertension is a heterogeneous group of diseases that is characterized by an increased mean pulmonary arterial pressure. Personalized medicine aims to individualize the treatment to the characteristics of the patient and the disease in order to improve the response to treatment and the outcome. This article describes the current and future approaches for implementation of personalized medicine for pulmonary hypertension. By use of the etiological classification, vasoreactivity testing, risk stratification, genetic testing and also consideration of clinical characteristics, such as age and sex, a personalization of treatment is already being applied. In the future pharmacogenetic investigations could help to predict the response to existing and new medical treatments. Using omics technologies new insights are gained not only in the area of the genome and transcriptome but also the epigenome, metabolome and proteome. These insights could be used for further subclassification of patient groups and development of new personalized treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Galiè N, Humbert M, Vachiery J‑L, Gibbs S, Lang I, Torbicki A et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 37(1):67–119

    Article  Google Scholar 

  2. Condliffe R, Kiely DG, Peacock AJ, Corris PA, Gibbs JSR, Vrapi F et al (2009) Connective tissue disease–associated pulmonary arterial hypertension in the modern treatment era. Am J Respir Crit Care Med 179(2):151–157

    Article  Google Scholar 

  3. Gall H, Felix JE, Schneck FK, Milger K, Sommer N, Voswinckel R et al (2017) The Giessen pulmonary hypertension registry: survival in pulmonary hypertension subgroups. J Heart Lung Transplant 36(9):957. https://doi.org/10.1016/j.healun.2017.02.016

    Article  Google Scholar 

  4. Sitbon O, Humbert M, Jagot JL, Taravella O, Fartoukh M, Parent F et al (1998) Inhaled nitric oxide as a screening agent for safely identifying responders to oral calcium-channel blockers in primary pulmonary hypertension. Eur Respir J 12(2):265–270

    Article  CAS  Google Scholar 

  5. Sitbon O, Humbert M, Jais X, Ioos V, Hamid AM, Provencher S et al (2005) Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111(23):3105–3111

    Article  CAS  Google Scholar 

  6. Milger K, Felix JF, Voswinckel R, Sommer N, Franco OH, Grimminger F et al (2015) Sildenafil versus nitric oxide for acute vasodilator testing in pulmonary arterial hypertension. Pulm Circ 5(2):305–312

    Article  CAS  PubMed  Google Scholar 

  7. Boucly A, Weatherald J, Savale L, Jaïs X, Cottin V, Prevot G et al (2017) Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J. 50(2) pii: 1700889. https://doi.org/10.1183/13993003.00889-2017.

    Article  CAS  Google Scholar 

  8. Hamid R, Cogan JD, Hedges LK, Austin E, Phillips JA, Newman JH et al (2009) Penetrance of pulmonary arterial hypertension is modulated by the expression of normal BMPR2 allele. Hum Mutat 30(4):649–654

    Article  CAS  PubMed  Google Scholar 

  9. Phillips JA, Poling JS, Phillips CA, Stanton KC, Austin ED, Cogan JD et al (2008) Synergistic heterozygosity for TGFβ1 SNPs and BMPR2 mutations modulates the age at diagnosis and penetrance of familial pulmonary arterial hypertension. Genet Med 10(5):359–365

    Article  CAS  Google Scholar 

  10. Austin ED, Cogan JD, West JD, Hedges LK, Hamid R, Dawson EP et al (2009) Alterations in oestrogen metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur Respir J 34(5):1093–1099

    Article  CAS  PubMed  Google Scholar 

  11. Evans JDW, Girerd B, Montani D, Wang X‑J, Galiè N, Austin ED et al (2016) BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis. Lancet Respir Med 4(2):129–137

    Article  CAS  PubMed  Google Scholar 

  12. Rosenzweig EB, Morse JH, Knowles JA, Chada KK, Khan AM, Roberts KE et al (2008) Clinical implications of determining BMPR2 mutation status in a large cohort of children and adults with pulmonary arterial hypertension. J Heart Lung Transplant 27(6):668–674

    Article  PubMed  Google Scholar 

  13. Eyries M, Montani D, Girerd B, Perret C, Leroy A, Lonjou C et al (2014) EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet 46(1):65–69

    Article  CAS  PubMed  Google Scholar 

  14. Galiè N, Barberà JA, Frost AE, Ghofrani H‑A, Hoeper MM, McLaughlin VV et al (2015) Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med 373(9):834–844

    Article  Google Scholar 

  15. Lajoie AC, Lauzière G, Lega J‑C, Lacasse Y, Martin S, Simard S et al (2016) Combination therapy versus monotherapy for pulmonary arterial hypertension: a meta-analysis. Lancet Respir Med 4(4):291–305

    Article  CAS  Google Scholar 

  16. Heresi GA, Love TE, Tonelli AR, Highland KB, Dweik RA (2018) Choice of initial oral therapy for pulmonary arterial hypertension, age and long term survival. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.201801-0059le

    Article  Google Scholar 

  17. Ventetuolo CE, Praestgaard A, Palevsky HI, Klinger JR, Halpern SD, Kawut SM (2014) Sex and haemodynamics in pulmonary arterial hypertension. Eur Respir J 43(2):523–530

    Article  Google Scholar 

  18. Ventetuolo CE, Mitra N, Wan F, Manichaikul A, Barr RG, Johnson C et al (2016) Oestradiol metabolism and androgen receptor genotypes are associated with right ventricular function. Eur Respir J 47(2):553–563

    Article  CAS  PubMed  Google Scholar 

  19. Gabler NB, French B, Strom BL, Liu Z, Palevsky HI, Taichman DB et al (2012) Race and sex differences in response to endothelin receptor antagonists for pulmonary arterial hypertension. Chest 141(1):20–26

    Article  CAS  PubMed  Google Scholar 

  20. Mathai SC, Hassoun PM, Puhan MA, Zhou Y, Wise RA (2015) Sex differences in response to tadalafil in pulmonary arterial hypertension. Chest 147(1):188–197

    Article  Google Scholar 

  21. Benza RL, Gomberg-Maitland M, Demarco T, Frost AE, Torbicki A, Langleben D et al (2015) Endothelin-1 pathway polymorphisms and outcomes in pulmonary arterial hypertension. Am J Respir Crit Care Med 192(11):1345–1354

    Article  CAS  PubMed  Google Scholar 

  22. Hemnes AR, Zhao M, West J, Newman JH, Rich S, Archer SL et al (2016) Critical genomic networks and vasoreactive variants in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 194(4):464–475

    Article  CAS  PubMed  Google Scholar 

  23. Hemnes AR, Trammell AW, Archer SL, Rich S, Yu C, Nian H et al (2015) Peripheral blood signature of vasodilator-responsive pulmonary arterial hypertension. Circulation 131(4):401–409

    Article  CAS  Google Scholar 

  24. Savale L, Guignabert C, Weatherald J, Humbert M (2018) Precision medicine and personalising therapy in pulmonary hypertension: seeing the light from the dawn of a new era. Eur Respir Rev 27(148):180004

    Article  Google Scholar 

  25. Nakhleh MK, Haick H, Humbert M, Cohen-Kaminsky S (2017) Volatolomics of breath as an emerging frontier in pulmonary arterial hypertension. Eur Respir J 49(2):1601897

    Article  Google Scholar 

  26. Pollett JB, Benza RL, Murali S, Shields KJ, Passineau MJ (2013) Harvest of pulmonary artery endothelial cells from patients undergoing right heart catheterization. J Heart Lung Transplant 32(7):746–749

    Article  Google Scholar 

  27. Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA, Loyd JE et al (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat Genet 26(1):81–84

    Article  CAS  Google Scholar 

  28. Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G et al (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor–II gene. Am J Hum Genet 67(3):737–744

    Article  CAS  PubMed  Google Scholar 

  29. Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D, Li CG (2013) FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest 123(8):3600–3613

    Article  CAS  PubMed  Google Scholar 

  30. Spiekerkoetter E, Sung YK, Sudheendra D, Scott V, Del Rosario P, Bill M et al (2017) Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur Respir J 50(3):1602449

    Article  Google Scholar 

  31. Newman JH, Rich S, Abman SH, Alexander JH, Barnard J, Beck GJ et al (2017) Enhancing insights into pulmonary vascular disease through a precision medicine approach. A joint NHLBI-cardiovascular medical research and education fund workshop report. Am J Respir Crit Care Med 195(12):1661–1670

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Milger-Kneidinger.

Ethics declarations

Interessenkonflikt

K. Milger-Kneidinger gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

J. Behr, München

E. von Mutius, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milger-Kneidinger, K. Personalisierte Medizin bei pulmonaler Hypertonie. Pneumologe 16, 76–87 (2019). https://doi.org/10.1007/s10405-018-0227-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-018-0227-1

Schlüsselwörter

Keywords

Navigation