Skip to main content
Log in

Übersicht COPD

Diagnostik, Prävention und Therapie

Overview of COPD

Diagnostics, prevention and treatment

  • CME
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Die chronisch obstruktive Lungenerkrankung (COPD) ist durch eine nicht vollständig reversible Atemflusseinschränkung charakterisiert und mit hoher Morbidität, Mortalität und Kosten verbunden. Die vermeidbare, typischerweise progredient verlaufende, aber behandelbare Erkrankung wird als pulmonale Komponente einer chronischen Multimorbidität angesehen. Die Diagnosestellung erfolgt anhand von Klinik und Spirometrie. Als bedeutendster Risikofaktor gilt inhalativer Zigarettenrauch, weshalb in der Behandlungsstrategie eine absolute Tabakkarenz die wichtigste präventive Maßnahme der COPD darstellt. Multimodale pharmakologische und nichtpharmakologische Therapieansätze sollen die Lebensqualität und die Lungenfunktion verbessern sowie Exazerbationen verhindern. Für eine gut selektionierte Patientengruppe mit Lungenemphysem können bronchoskopische Maßnahmen in ausgewiesenen Zentren eine mögliche Behandlungsoption darstellen.

Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by an incompletely reversible impairment of airflow and is associated with high morbidity, mortality and costs. The avoidable and typically progressive but treatable disease is seen as a pulmonary component of chronic multimorbidity. The diagnosis is made based on clinical symptoms and spirometry. The most important risk factor is inhalation of cigarette smoke, which is why in the treatment strategy an absolute cessation of smoking is the most important preventive measure for COPD. Multimodal pharmacological and non-pharmacological treatment approaches aim to improve the quality of life and lung function and to prevent exacerbation. For selected patient groups bronchoscopic measures in referral centers can represent a possible treatment option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Murray CJ, Lopez AD (2013) Measuring the global burden of disease. N Engl J Med 369(5):448–457

    Article  CAS  PubMed  Google Scholar 

  2. Rosenbaum L, Lamas D (2011) Facing a „slow-motion disaster“ – the UN meeting on noncommunicable diseases. N Engl J Med 365(25):2345–2348

    Article  CAS  PubMed  Google Scholar 

  3. Global Initiative for Chronic Obstructive Lung Disease (2016) GOLD 2017 report. www.goldcopd.org

    Google Scholar 

  4. Raherison C, Girodet PO (2009) Epidemiology of COPD. Eur Respir Rev 18(114):213–221

    Article  CAS  PubMed  Google Scholar 

  5. Tuder RM, Petrache I (2012) Pathogenesis of chronic obstructive pulmonary disease. J Clin Invest 122(8):2749–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kotecha SJ et al (2013) Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax 68(8):760–766

    Article  PubMed  Google Scholar 

  7. Brostrom EB et al (2010) Obstructive lung disease in children with mild to severe BPD. Respir Med 104(3):362–370

    Article  PubMed  Google Scholar 

  8. Greulich T et al (2013) Alpha1-antitrypsin deficiency – diagnostic testing and disease awareness in Germany and Italy. Respir Med 107(9):1400–1408

    Article  PubMed  Google Scholar 

  9. Greulich T, Vogelmeier CF (2015) Alpha-1-antitrypsin deficiency: increasing awareness and improving diagnosis. Ther Adv Respir Dis 10(1):72–84. doi:10.1177/1753465815602162

    Article  PubMed  Google Scholar 

  10. Watz H et al (2009) Physical activity in patients with COPD. Eur Respir J 33(2):262–272

    Article  CAS  PubMed  Google Scholar 

  11. Kessler R et al (2011) Symptom variability in patients with severe COPD: a pan-European cross-sectional study. Eur Respir J 37(2):264–272

    Article  CAS  PubMed  Google Scholar 

  12. Celli BR et al (2015) An official American Thoracic Society/European Respiratory Society statement: research questions in COPD. Eur Respir J 45(4):879–905

    Article  PubMed  Google Scholar 

  13. Vanfleteren LE et al (2013) Clusters of comorbidities based on validated objective measurements and systemic inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 187(7):728–735

    Article  PubMed  Google Scholar 

  14. Dursunoglu N et al (2015) Severity of coronary atherosclerosis in patients with COPD. Clin Respir J. doi:10.1111/crj.12412

    PubMed  Google Scholar 

  15. Barnes PJ, Celli BR (2009) Systemic manifestations and comorbidities of COPD. Eur Respir J 33(5):1165–1185

    Article  CAS  PubMed  Google Scholar 

  16. Vanfleteren LE (2015) Does COPD stand for „COmorbidity with Pulmonary Disease“? Eur Respir J 45(1):14–17

    Article  PubMed  Google Scholar 

  17. Rizkallah J, Man SF, Sin DD (2009) Prevalence of pulmonary embolism in acute exacerbations of COPD: a systematic review and metaanalysis. Chest 135(3):786–793

    Article  PubMed  Google Scholar 

  18. Shapira-Rootman M et al (2015) The prevalence of pulmonary embolism among patients suffering from acute exacerbations of chronic obstructive pulmonary disease. Emerg Radiol 22(3):257–260

    Article  PubMed  Google Scholar 

  19. Chen CY, Liao KM (2015) The incidence of deep vein thrombosis in Asian patients with chronic obstructive pulmonary disease. Medicine (Baltimore) 94(44):e1741

    Article  Google Scholar 

  20. Borvik T et al (2016) COPD and risk of venous thromboembolism and mortality in a general population. Eur Respir J 47(2):473–481

    Article  PubMed  Google Scholar 

  21. Hobbs BD et al (2014) Pneumothorax risk factors in smokers with and without chronic obstructive pulmonary disease. Ann Am Thorac Soc 11(9):1387–1394

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fabbri LM, Beghe B, Agusti A (2012) COPD and the solar system: introducing the chronic obstructive pulmonary disease comorbidome. Am J Respir Crit Care Med 186(2):117–119

    Article  PubMed  Google Scholar 

  23. Zvezdin B et al (2009) A postmortem analysis of major causes of early death in patients hospitalized with COPD exacerbation. Chest 136(2):376–380

    Article  PubMed  Google Scholar 

  24. Vestbo J et al (2013) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187(4):347–365

    Article  CAS  PubMed  Google Scholar 

  25. Vogelmeier CF et al (2015) Changes in GOLD: today and tomorrow. Lancet Respir Med 3(6):424–426

    Article  PubMed  Google Scholar 

  26. Anthonisen NR et al (1994) Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study. JAMA 272(19):1497–1505

    Article  CAS  PubMed  Google Scholar 

  27. Cahill K, Stead LF, Lancaster T (2007) Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev:. doi:10.1002/14651858.cd006103.pub2

    Google Scholar 

  28. Cahill K, Stead LF, Lancaster T (2008) Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev:. doi:10.1002/14651858.cd006103.pub3

    PubMed Central  Google Scholar 

  29. Halpern SD et al (2015) Randomized trial of four financial-incentive programs for smoking cessation. N Engl J Med 372(22):2108–2117

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stead LF et al (2010) Combined pharmacotherapy and behavioural interventions for smoking cessation. Cochrane Database Syst Rev:. doi:10.1002/14651858.cd008286

    Google Scholar 

  31. Whittaker R et al (2007) Mobile phone-based interventions for smoking cessation. Cochrane Database Syst Rev:. doi:10.1002/14651858.cd006611

    Google Scholar 

  32. McRobbie H et al (2014) Electronic cigarettes for smoking cessation and reduction. Cochrane Database Syst Rev:. doi:10.1002/14651858.cd010216.pub2

    PubMed  Google Scholar 

  33. Kalkhoran S, Glantz SA (2016) E‑cigarettes and smoking cessation in real-world and clinical settings: a systematic review and meta-analysis. Lancet Respir Med 4(2):116–128

    Article  PubMed  Google Scholar 

  34. Nowak D et al (2015) Position paper of the German Respiratory Society (DGP) on electronic cigarettes (E-cigarettes) in cooperation with the following scientific societies and organisations: BVKJ, BdP, DGAUM, DGG, DGIM, DGK, DKG, DGSMP, GPP. Pneumologie 69(3):131–134

    Article  CAS  PubMed  Google Scholar 

  35. Torres A et al (2015) Which individuals are at increased risk of pneumococcal disease and why? Impact of COPD, asthma, smoking, diabetes, and/or chronic heart disease on community-acquired pneumonia and invasive pneumococcal disease. Thorax 70(10):984–989

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moberley S et al (2013) Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev:. doi:10.1002/14651858.cd000422.pub3

    PubMed  Google Scholar 

  37. Tomczyk S et al (2014) Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥ 65 years: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep 63(37):822–825

    PubMed  Google Scholar 

  38. Mirsaeidi M et al (2014) Pneumococcal vaccine and patients with pulmonary diseases. Am J Med 127(9):886.e1–886.e8

    Article  CAS  Google Scholar 

  39. Pisano J, Cifu AS (2015) Use of pneumococcal vaccine in adults. JAMA 313(7):719–720

    Article  CAS  PubMed  Google Scholar 

  40. Isturiz R, Webber C (2015) Prevention of adult pneumococcal pneumonia with the 13-valent pneumococcal conjugate vaccine: CAPiTA, the community-acquired pneumonia immunization trial in adults. Hum Vaccin Immunother 11(7):1825–1827

    Article  PubMed  PubMed Central  Google Scholar 

  41. Griffiths TL et al (2000) Results at 1 year of outpatient multidisciplinary pulmonary rehabilitation: a randomised controlled trial. Lancet 355(9201):362–368

    Article  CAS  PubMed  Google Scholar 

  42. McCarthy B et al (2015) Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev:. doi:10.1002/14651858.cd003793.pub3

    Google Scholar 

  43. Candemir I et al (2015) Assessment of pulmonary rehabilitation efficacy in chronic obstructive pulmonary disease patients using the chronic obstructive pulmonary disease assessment test. Expert Rev Respir Med 9(4):487–492

    Article  CAS  PubMed  Google Scholar 

  44. Puhan MA et al (2005) Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev:. doi:10.1002/14651858.cd005305

    Google Scholar 

  45. Puhan MA et al (2012) Early versus late pulmonary rehabilitation in chronic obstructive pulmonary disease patients with acute exacerbations: a randomized trial. Respiration 83(6):499–506

    Article  PubMed  Google Scholar 

  46. Greulich T et al (2015) Effect of a three-week inpatient rehabilitation program on 544 consecutive patients with very severe COPD: a retrospective analysis. Respiration 90(4):287–292

    Article  PubMed  Google Scholar 

  47. Vieira DS, Maltais F, Bourbeau J (2015) Home-based pulmonary rehabilitation in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med 16(2):134–143

    Article  Google Scholar 

  48. Marquis N et al (2015) In-home pulmonary telerehabilitation for patients with chronic obstructive pulmonary disease: a pre-experimental study on effectiveness, satisfaction, and adherence. Telemed J E Health 21(11):870–879

    Article  PubMed  Google Scholar 

  49. Paneroni M et al (2013) Feasibility and effectiveness of an educational program in Italian COPD patients undergoing rehabilitation. Respir Care 58(2):327–333

    Article  PubMed  Google Scholar 

  50. Paneroni M et al (2015) Is telerehabilitation a safe and viable option for patients with COPD? A feasibility study. COPD 12(2):217–225

    Article  PubMed  Google Scholar 

  51. Vogelmeier C et al (2011) Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med 364(12):1093–1103

    Article  CAS  PubMed  Google Scholar 

  52. Wedzicha JA et al (2016) Indacaterol-glycopyrronium versus salmeterol-fluticasone for COPD. N Engl J Med 374(23):2222–2234

    Article  CAS  PubMed  Google Scholar 

  53. Woodruff PG et al (2015) Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management. Lancet 385(9979):1789–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Albert RK et al (2011) Azithromycin for prevention of exacerbations of COPD. N Engl J Med 365(8):689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tashkin DP et al (2008) A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med 359(15):1543–1554

    Article  CAS  PubMed  Google Scholar 

  56. Vogelmeier CF (2014) Possible harms of theophylline in chronic obstructive pulmonary disease. Dtsch Ärztebl Int 111(17):291–292

    PubMed  PubMed Central  Google Scholar 

  57. Leuppi JD et al (2013) Short-term vs conventional glucocorticoid therapy in acute exacerbations of chronic obstructive pulmonary disease: the REDUCE randomized clinical trial. JAMA 309(21):2223–2231

    Article  CAS  PubMed  Google Scholar 

  58. Soler N et al (2012) Sputum purulence-guided antibiotic use in hospitalised patients with exacerbations of COPD. Eur Respir J 40(6):1344–1353

    Article  CAS  PubMed  Google Scholar 

  59. Troosters T (2013) Chronic obstructive pulmonary disease: exercise training on the edge. Exp Physiol 98(6):1079–1080

    Article  PubMed  Google Scholar 

  60. Greulich T et al (2014) Benefits of whole body vibration training in patients hospitalised for COPD exacerbations – a randomized clinical trial. BMC Pulm Med 14:60

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zoumot Z et al (2015) Endobronchial coils for severe emphysema are effective up to 12 months following treatment: medium term and cross-over results from a randomised controlled trial. PLOS ONE 10(4):e0122656

    Article  PubMed  PubMed Central  Google Scholar 

  62. Eberhardt R et al (2015) Endoscopic lung volume reduction with endobronchial valves in patients with severe emphysema and established pulmonary hypertension. Respiration 89(1):41–48

    Article  PubMed  Google Scholar 

  63. Eberhardt R et al (2015) Endoscopic bronchial valve treatment: patient selection and special considerations. Int J Chron Obstruct Pulmon Dis 10:2147–2157

    PubMed  PubMed Central  Google Scholar 

  64. Klooster K et al (2015) Endobronchial valves for emphysema without Interlobar collateral ventilation. N Engl J Med 373(24):2325–2335

    Article  CAS  PubMed  Google Scholar 

  65. Magnussen H et al (2014) Statement to long term oxygen therapy. Pneumologie 68(9):591–593

    Article  CAS  PubMed  Google Scholar 

  66. Koehler U et al (2014) Long-term oxygen therapy (LTOT) – what should physicians, homecare-providers and health insurance companies know? Pneumologie 68(3):193–198

    Article  CAS  PubMed  Google Scholar 

  67. Lloyd-Owen SJ et al (2005) Patterns of home mechanical ventilation use in Europe: results from the Eurovent survey. Eur Respir J 25(6):1025–1031

    Article  CAS  PubMed  Google Scholar 

  68. Kohnlein T et al (2014) Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial. Lancet Respir Med 2(9):698–705

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Beutel.

Ethics declarations

Interessenkonflikt

B. Beutel, T. Greulich, C. Vogelmeier und A. R. Koczulla geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

C. Geßner, Leipzig

O. Karg, Gauting

H. Olschewski, Graz

CME-Fragebogen

CME-Fragebogen

Welches ist kein gesicherter Risikofaktor für die Entwicklung einer COPD?

Frühgeburtlichkeit

Inhalativer Zigarettenrauch

Verbrennung von Biomasse in geschlossenen Räumen

4‑Beta-1-Antitrypsinmangel

Familiäre Disposition

Welche Aussage zur Komorbidität bei COPD ist falsch?

Mehr als 50 % der COPD-Patienten haben >4 Komorbiditäten.

Ein Viertel der COPD-Patienten haben eine kardiovaskuläre Komorbidität.

Mehr als 90 % der COPD-Patienten haben eine Komorbidität.

Depressionen treten bei COPD-Patienten vermehrt auf.

Muskelatrophie ist eine Komorbidität der COPD.

Welche Aussage zum Pneumothorax bei COPD-Patienten ist korrekt?

Pneumothoraces werden bei COPD-Patienten nicht beobachtet.

Eine Einschränkung in der Lungenfunktion gilt als Prädiktor für Pneumothoraces.

Pneumothoraces treten vermehrt im linken Lungenflügel auf.

Pneumothoraces treten vermehrt im rechten Lungenflügel auf.

Pneumothoraces treten vermehrt bei subpleural betontem Lungenemphysem auf.

Ab welchem Wert des Tiffenau-Index wird eine obstruktive Ventilationsstörung definiert?

<1b

<0,9

<0,8

<0,7

<0,6

Welche der folgenden Maßnahmen ist für eine Tabakentwöhnung am wenigsten geeignet?

Ökonomische Anreize

Cytisine

Varenicline

Verhaltenstherapeutische Ansätze

Akupunktur

Welche Aussage zur Vakzinierung bei COPD-Patienten ist richtig?

Eine Vakzinierung wird bei der COPD nicht empfohlen.

Es sollte bei COPD-Patienten nur eine Vakzinierung gegen Pneumokokken erfolgen.

Es sollte bei COPD-Patienten nur eine Vakzinierung gegen Influenza erfolgen.

Es wird eine Vakzinierung gegen Influenza und Pneumokokken empfohlen.

Nur der Polysaccharid-Impfstoff (PSV-23) hat eine Zulassung zur Vakzinierung gegen Pneumokokken bei COPD.

Wie hoch ist die „number needed to treat“, um durch rehabilitative Maßnahmen nach COPD-Exazerbation weitere Hospitalisierungen wegen Exazerbation zu vermeiden?

4 Patienten

8 Patienten

12 Patienten

16 Patienten

20 Patienten

Welche Aussage zur inhalativen Kortisontherapie (ICS) bei COPD ist korrekt?

Für die Risikogruppe B ist die ICS/LABA-Kombination der LAMA/LABA-Kombination überlegen.

ICS-bedingte Pneumonien haben eine erhöhte Mortalität.

Eine ICS-Monotherapie ist bei Patienten mit leichtgradiger COPD indiziert.

Die ICS/LABA-Kombination führt zu signifikant mehr unerwünschten Arzneimittelwirkungen als die LAMA/LABA-Kombination.

Die ICS/LABA-Kombination wird von GOLD für die Risikogruppen C und D empfohlen.

Welches der folgenden Verfahren ist nicht zur endoskopischen Volumenreduktion geeignet?

Ventile

Coils

Fibrinkleber

Heißer Dampf

Nitriol-Spiralen

Bei wie viel Prozent der COPD-Patienten findet man einen AAT-Mangel?

1 %

5 %

10 %

15 %

20 %

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beutel, B., Greulich, T., Vogelmeier, C. et al. Übersicht COPD. Pneumologe 14, 35–45 (2017). https://doi.org/10.1007/s10405-016-0089-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-016-0089-3

Schlüsselwörter

Keywords

Navigation