Skip to main content
Log in

Herausforderungen bei der Diagnostik der pulmonalen Hypertonie

Challenges in the diagnostics of pulmonary hypertension

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Die Rechtsherzkatheteruntersuchung ist nach wie vor die Goldstandarduntersuchung zur Diagnose einer pulmonalen Hypertonie (PH). Obwohl die Methode seit Jahrzehnten mit wenigen Veränderungen eingesetzt wird, konnten in den letzten Jahren wichtige Herausforderungen identifiziert werden. Diese betreffen in erster Linie die Frühdiagnostik und die Differentialdiagnostik der PH. Im Bereich Frühdiagnostik spielen Belastungsuntersuchungen eine wichtige Rolle. Neue Studien weisen darauf hin, dass die gemeinsame Erhöhung des pulmonalarteriellen Mitteldrucks und des pulmonalen Widerstands bei Belastung eine neue Basis zur Definition einer Belastungs-PH darstellen könnte. Im Bereich Differentialdiagnose stellt sich oft die Frage, ob eine bestehende Herz- oder Lungenerkrankung als Komorbidität oder als Ursache für die PH interpretiert werden soll und wie latente Formen dieser Erkrankungen identifiziert werden können. Die Verwendung der nichtinvasiven diagnostischen Methoden hat in den letzten Jahren zugenommen und in vielen Fragestellungen ergänzen sie erfolgreich die Rechtsherzkatheteruntersuchung. Einfache nichtinvasive Methoden können behilflich sein, Patienten mit sehr wahrscheinlicher und sehr unwahrscheinlicher PH zu identifizieren. Die wichtigste nichtinvasive diagnostische Methode im Bereich PH bleibt die Echokardiographie. Zusätzlich zu klassischen Parametern wurden in aktuellen Studien neue Methoden beschrieben, die eine prognostische Relevanz für die PH nachgewiesen haben. Die Gewebedopplerechokardiographie und die dreidimensionale Echokardiographie sind in der Lage, die rechtsventrikuläre Funktion zuverlässig zu erfassen. Mit der Belastungsechokardiographie können die Belastungshämodynamik und die kontraktile Reserve bestimmt werden. Neue Methoden zur nichtinvasiven Erfassung der pulmonalen Hämodynamik mittels Computertomographie (CT) und Magnetresonanztomographie (MRT) sind sehr vielversprechend und werden in den kommenden Jahren mit großer Wahrscheinlichkeit eine zunehmende Rolle im diagnostischen Algorithmus der PH spielen.

Abstract

Right heart catheterization represents the gold standard examination for the diagnosis of pulmonary hypertension (PH). Although this method has been used for several decades with only minor technical changes, in the last few years some important challenges have been identified. These mainly involve the early diagnosis and the differential diagnosis of PH. In the field of early diagnosis exercise investigations play an increasingly important role. Current studies suggest that the increase of both mean pulmonary arterial pressure and total pulmonary resistance during exercise may provide a new basis for the definition of exercise PH. In the field of differential diagnostics the classification of cardiac and pulmonary diseases as comorbidities or the cause of PH and the identification of the latent forms can represent a major challenge. The importance of novel non-invasive diagnostic methods has increased in recent years and in several questions these add important information to right heart catheterization data. Simple non-invasive methods can help to identify patients with a very likely or a very unlikely PH. The most important non-invasive method for PH remains echocardiography. In addition to classical parameters, novel techniques with prognostic relevance have been established. Tissue Doppler echocardiography and 3-dimensional echocardiography can reliably assess right ventricular function and exercise echocardiography can describe exercise hemodynamics and determine the contractile reserve. Modern imaging methods, including computed tomography (CT) and magnetic resonance imaging (MRI), are very promising in the non-invasive assessment of pulmonary hemodynamics and in upcoming years will most probably play an increasing role in the diagnostic algorithm for PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Hoeper MM, Bogaard HJ, Condliffe R et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62:D42–D50

    Article  PubMed  Google Scholar 

  2. Kovacs G, Avian A, Olschewski A, Olschewski H (2013) Zero reference level for right heart catheterisation. Eur Respir J 42:1586–1594

    Article  PubMed  Google Scholar 

  3. Kovacs G, Avian A, Pienn M et al (2014) Reading pulmonary vascular pressure tracings. How to handle the problems of zero leveling and respiratory swings. Am J Respir Crit Care Med 190:252–257

    Article  PubMed  Google Scholar 

  4. Badesch DB, Champion HC, Sanchez MA et al (2009) Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 54:S55–S66

    Article  PubMed  Google Scholar 

  5. Kovacs G, Berghold A, Scheidl S, Olschewski H (2009) Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 34:888–894

    Article  CAS  PubMed  Google Scholar 

  6. Kovacs G, Avian A, Tscherner M et al (2014) Characterization of patients with borderline pulmonary arterial pressure. Chest 146:1486–1493

    Article  PubMed  Google Scholar 

  7. Bush CA, Stang JM, Wooley CF, Kilman JW (1977) Occult constrictive pericardial disease. Diagnosis by rapid volume expansion and correction by pericardiectomy. Circulation 56:924–930

    Article  CAS  PubMed  Google Scholar 

  8. Fujimoto N, Borlaug BA, Lewis GD et al (2013) Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circulation 127:55–62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Seeger W, Adir Y, Barbera JA et al (2013) Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol 62:D109–D116

    Article  PubMed  Google Scholar 

  10. Kovacs G, Pienn M, Grunig E et al (2014) Modern imaging methods in the management of pulmonary hypertension. Dtsch Med Wochenschr 139(Suppl 4):S121–S125

    Article  PubMed  Google Scholar 

  11. Kovacs G, Pienn M, Olschewski H (2014) Diagnosis of pulmonary hypertension – novelties after the 5th world conference. Pneumologie 68:743–751

    Article  CAS  PubMed  Google Scholar 

  12. Sachdev A, Villarraga HR, Frantz RP et al (2011) Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest 139:1299–1309

    Article  PubMed  Google Scholar 

  13. Haeck ML, Scherptong RW, Marsan NA et al (2012) Prognostic value of right ventricular longitudinal peak systolic strain in patients with pulmonary hypertension. Circ Cardiovasc Imaging 5:628–636

    Article  PubMed  Google Scholar 

  14. Rajagopalan N, Saxena N, Simon MA et al (2007) Correlation of tricuspid annular velocities with invasive hemodynamics in pulmonary hypertension. Congest Heart Fail 13:200–204

    Article  PubMed  Google Scholar 

  15. Ernande L, Cottin V, Leroux PY et al (2013) Right isovolumic contraction velocity predicts survival in pulmonary hypertension. J Am Soc Echocardiogr 26:297–306

    Article  PubMed  Google Scholar 

  16. Li Y, Xie M, Wang X et al (2013) Right ventricular regional and global systolic function is diminished in patients with pulmonary arterial hypertension: a 2-dimensional ultrasound speckle tracking echocardiography study. Int J Cardiovasc Imaging 29:545–551

    Article  PubMed  Google Scholar 

  17. Lopez-Candales A, Lopez FR, Trivedi S, Elwing J (2014) Right ventricular ejection efficiency: a new echocardiographic measure of mechanical performance in chronic pulmonary hypertension. Echocardiography 31:516–523

    Article  PubMed  Google Scholar 

  18. Grapsa J, Gibbs JS, Dawson D et al (2012) Morphologic and functional remodeling of the right ventricle in pulmonary hypertension by real time three dimensional echocardiography. Am J Cardiol 109:906–913

    Article  PubMed  Google Scholar 

  19. Zhang QB, Sun JP, Gao RF et al (2013) Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography for quantification of right ventricular volume: validation by cardiac magnetic resonance imaging. Int J Cardiol 168:3991–3995

    Article  PubMed  Google Scholar 

  20. D’Andrea A, Naeije R, Grunig E et al (2014) Echocardiography of the pulmonary circulation and right ventricular function: exploring the physiologic spectrum in 1,480 normal subjects. Chest 145:1071–1078

    Article  Google Scholar 

  21. Grunig E, Henn P, D’Andrea A et al (2013) Reference values for and determinants of right atrial area in healthy adults by 2-dimensional echocardiography. Circ Cardiovasc Imaging 6:117–124

    Article  PubMed  Google Scholar 

  22. Kovacs G, Maier R, Aberer E et al (2010) Assessment of pulmonary arteriel pressure during exercise in collagen vascular disease: echocardiography versus rught heart catheterisation. Chest 138:270–278

    Article  PubMed  Google Scholar 

  23. Grunig E, Tiede H, Enyimayew EO et al (2013) Assessment and prognostic relevance of right ventricular contractile reserve in patients with severe pulmonary hypertension. Circulation 128:2005–2015

    Article  PubMed  Google Scholar 

  24. Dornia C, Lange TJ, Behrens G et al (2012) Multidetector computed tomography for detection and characterization of pulmonary hypertension in consideration of WHO classification. J Comput Assist Tomogr 36:175–180

    Article  PubMed  Google Scholar 

  25. Iyer AS, Wells JM, Vishin S et al (2014) CT scan-measured pulmonary artery to aorta ratio and echocardiography for detecting pulmonary hypertension in severe COPD. Chest 145:824–832

    Article  PubMed Central  PubMed  Google Scholar 

  26. Helmberger M, Pienn M, Urschler M et al (2014) Quantification of tortuosity and fractal dimension of the lung vessels in pulmonary hypertension patients. PLoS One 9:e87515

    Article  PubMed Central  PubMed  Google Scholar 

  27. Pienn M, Kovacs G, Tscherner M et al (2014) Non-invasive determination of pulmonary hypertension with dynamic contrast-enhanced computed tomography: a pilot study. Eur Radiol 24:668–676

    Article  PubMed  Google Scholar 

  28. Peacock AJ, Crawley S, McLure L et al (2014) Changes in right ventricular function measured by cardiac magnetic resonance imaging in patients receiving pulmonary arterial hypertension-targeted therapy: the EURO-MR study. Circ Cardiovasc Imaging 7:107–114

    Article  PubMed  Google Scholar 

  29. Reiter G, Reiter U, Kovacs G et al (2008) Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging 1:23–30

    Article  PubMed  Google Scholar 

  30. Reiter G, Reiter U, Kovacs G et al (2014) Blood flow vortices along the main pulmonary artery measured with mr imaging for diagnosis of pulmonary hypertension. Radiology 275:71–79

    Article  PubMed  Google Scholar 

  31. Oikawa M, Kagaya Y, Otani H et al (2005) Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol 45:1849–1855

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Zhang Y, Yan C et al (2013) Evaluation of right ventricular volume and ejection fraction by gated (18)F-FDG PET in patients with pulmonary hypertension: comparison with cardiac MRI and CT. J Nucl Cardiol 20:242–252

    Article  PubMed  Google Scholar 

  33. Tatebe S, Fukumoto Y, Oikawa-Wakayama M et al (2014) Enhanced [18F]fluorodeoxyglucose accumulation in the right ventricular free wall predicts long-term prognosis of patients with pulmonary hypertension: a preliminary observational study. Eur Heart J Cardiovasc Imaging 15:666–672

    Article  PubMed  Google Scholar 

  34. Lau EM, Bailey DL, Bailey EA et al (2014) Pulmonary hypertension leads to a loss of gravity dependent redistribution of regional lung perfusion: a SPECT/CT study. Heart 100:47–53

    Article  PubMed  Google Scholar 

  35. Bonderman D, Wexberg P, Martischnig AM et al (2011) A noninvasive algorithm to exclude pre-capillary pulmonary hypertension. Eur Respir J 37:1096–1103

    Article  CAS  PubMed  Google Scholar 

  36. Herve P, Lau E, Sitbon O et al (2015) Criteria for diagnosis of exercise pulmonary hypertension. Eur Respir J (Epub ahead of print)

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. G. Kovacs hat Honorare von Actelion, GSK, Boehringer Ingelheim, AstraZeneca, Bayer, Pfizer, Novartis, Nycomed und Chiesi erhalten. H. Olschewski gibt Zuschüsse von Actelion sowie Honorare und Beratungstätigkeiten für das Ludwig Boltzmann Institut für Lungengefäßforschung, Bayer, Actelion, Gilead, GSK, Pfizer, AstraZeneca, Boehringer Ingelheim, Almirall, Chiesi und Takeda an.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kovacs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovacs, G., Olschewski, H. Herausforderungen bei der Diagnostik der pulmonalen Hypertonie. Pneumologe 12, 381–389 (2015). https://doi.org/10.1007/s10405-015-0880-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-015-0880-6

Schlüsselwörter

Keywords

Navigation