Skip to main content
Log in

Entzündung und Ernährung bei Mukoviszidose

Inflammation and nutrition in mucoviscidosis

  • Pädiatrische Pneumologie
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Mukoviszidose oder zystische Fibrose (CF) ist die häufigste lebensverkürzende, autosomal-rezessive Erkrankung mit einer deutlich reduzierten durchschnittlichen Lebenserwartung, meist aufgrund respiratorischer Insuffizienz. Der frühe Ernährungszustand bei CF ist direkt mit der Progression der Lungenerkrankung vergesellschaftet. Unklar ist jedoch weiterhin wie und in welchem Umfang diätetische Interventionen den Grad der pulmointestinalen Entzündung beeinflussen und den Krankheitsverlauf verbessern. Es verdichten sich die Hinweise, dass bioaktive Nahrungsbestandteile, wie mehrfach ungesättigte Fettsäuren („polyunsaturated fatty acids“, PUFA), Probiotika, Vitamine und Antioxidantien antientzündlich wirken können. Gegenstand dieser Übersichtsarbeit sind antientzündliche Ernährungsstrategien bei Mukoviszidose.

Abstract

Mucoviscidosis or cystic fibrosis (CF) is the most common life-shortening autosomal recessive disorder with a significantly reduced average life expectancy. In most cases, the mortality in CF is due to respiratory insufficiency. The early nutritional status in CF is directly associated with the progression of lung disease. However, the impact of dietary interventions on pulmonary and intestinal inflammation to prevent disease progression remains a matter of debate. Growing evidence shows that bioactive food components, such as polyunsaturated fatty acids (PUFA), probiotics, vitamins and antioxidants, have beneficial effects on the inflammation in CF. This review article focuses on anti-inflammatory nutritional strategies in cystic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Farrell PM (2008) The prevalence of cystic fibrosis in the European Union. J Cyst Fibros 7(5):450–453

    Article  PubMed  Google Scholar 

  2. Knowles MR, Durie PR (2002) What is cystic fibrosis? N Engl J Med 347(6):439–442

    Article  PubMed  Google Scholar 

  3. Steinkamp G, Wiedemann B (2002) Relationship between nutritional status and lung function in cystic fibrosis: cross sectional and longitudinal analyses from the German CF quality assurance (CFQA) project. Thorax 57(7):596–601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Borowitz D, Durie PR, Clarke LL et al (2005) Gastrointestinal outcomes and confounders in cystic fibrosis. J Pediatr Gastroenterol Nutr 41(3):273–285

    Article  PubMed  Google Scholar 

  5. Eickmeier O, Hilberath JN, Zielen S, Haworth O (2011) Die Rolle neuer \“pro-resolving\“ Lipidmediatoren bei entzündlichen Lungenerkrankungen. Pneumologie 65(3):149–158

    Article  CAS  PubMed  Google Scholar 

  6. Levy BD, Serhan CN (2014) Resolution of acute inflammation in the lung. Annu Rev Physiol 76:467–492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cheng K, Ashby D, Smyth RL (2013) Oral steroids for long-term use in cystic fibrosis. Cochrane Database Syst Rev 6:CD000407

    PubMed  Google Scholar 

  8. Lands LC, Stanojevic S (2013) Oral non-steroidal anti-inflammatory drug therapy for lung disease in cystic fibrosis. Cochrane Database Syst Rev 6:CD001505

    PubMed  Google Scholar 

  9. Smyth RL, Croft NM, O’Hea U et al (2000) Intestinal inflammation in cystic fibrosis. Arch Dis Child 82(5):394–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Werlin SL, Benuri-Silbiger I, Kerem E et al (2010) Evidence of intestinal inflammation in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 51(3):304–308

    CAS  PubMed  Google Scholar 

  11. Rowe SM, Heltshe SL, Gonska T et al (2014) Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med 190(2):175–184

    Article  CAS  PubMed  Google Scholar 

  12. Fagerberg UL, Lööf L, Lindholm J et al (2007) Fecal calprotectin: a quantitative marker of colonic inflammation in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 45(4):414–420

    Article  PubMed  Google Scholar 

  13. Gisbert JP, McNicholl AG (2009) Questions and answers on the role of faecal calprotectin as a biological marker in inflammatory bowel disease. Dig Liver Dis 41(1):56–66

    Article  CAS  PubMed  Google Scholar 

  14. Bruzzese E, Raia V, Gaudiello G et al (2004) Intestinal inflammation is a frequent feature of cystic fibrosis and is reduced by probiotic administration. Aliment Pharmacol Ther 20(7):813–819

    Article  CAS  PubMed  Google Scholar 

  15. Dodge JA, Turck D (2006) Cystic fibrosis: nutritional consequences and management. Best Pract Res Clin Gastroenterol 20(3):531–546

    Article  CAS  PubMed  Google Scholar 

  16. Feranchak AP, Sontag MK, Wagener JS et al (1999) Prospective, long-term study of fat-soluble vitamin status in children with cystic fibrosis identified by newborn screen. J Pediatr 135(5):601–610

    Article  CAS  PubMed  Google Scholar 

  17. Bonifant CM, Shevill E, Chang AB (2012) Vitamin A supplementation for cystic fibrosis. Cochrane Database Syst Rev 8:CD006751

    PubMed  Google Scholar 

  18. O’Neil C, Shevill E, Chang AB (2008) Vitamin A supplementation for cystic fibrosis. Cochrane Database Syst Rev 1:CD006751

    Google Scholar 

  19. Rayner RJ, Tyrrell JC, Hiller EJ et al (1989) Night blindness and conjunctival xerosis caused by vitamin A deficiency in patients with cystic fibrosis. Arch Dis Child 64(8):1151–1156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Carr SB, McBratney J (2000) The role of vitamins in cystic fibrosis. J R Soc Med 93(Suppl 38):14–19

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Siems W, Salerno C, Crifò C et al (2009) Beta-carotene degradation products – formation, toxicity and prevention of toxicity. Forum Nutr 61:75–86

    Article  CAS  PubMed  Google Scholar 

  22. Grey V, Atkinson S, Drury D et al (2008) Prevalence of low bone mass and deficiencies of vitamins D and K in pediatric patients with cystic fibrosis from 3 Canadian centers. Pediatrics 122(5):1014–1020

    Article  PubMed  Google Scholar 

  23. Wang T, Nestel FP, Bourdeau V et al (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173(5):2909–2912

    Article  CAS  PubMed  Google Scholar 

  24. Hollox EJ, Armour JAL, Barber, J CK (2003) Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet 73(3):591–600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Herscovitch K, Dauletbaev N, Lands LC (2014) Vitamin D as an anti-microbial and anti-inflammatory therapy for Cystic Fibrosis. Paediatr Respir Rev 15(2):154–162

    CAS  PubMed  Google Scholar 

  26. Yim S, Dhawan P, Ragunath C et al (2007) Induction of cathelicidin in normal and CF bronchial epithelial cells by 1,25-dihydroxyvitamin D(3). J Cyst Fibros 6(6):403–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Liu MC, Xiao H, Brown AJ et al (2012) Association of vitamin D and antimicrobial peptide production during late-phase allergic responses in the lung. Clin Exp Allergy 42(3):383–391

    Article  CAS  PubMed  Google Scholar 

  28. Adams JS, Ren S, Liu PT et al (2009) Vitamin d-directed rheostatic regulation of monocyte antibacterial responses. J Immunol 182(7):4289–4295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Banerjee A, Damera G, Bhandare R et al (2008) Vitamin D and glucocorticoids differentially modulate chemokine expression in human airway smooth muscle cells. Br J Pharmacol 155(1):84–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Simoneau T, Bazzaz O, Sawicki GS, Gordon C (2014) Vitamin D status in children with cystic fibrosis. Associations with inflammation and bacterial colonization. Ann Am Thorac Soc 11(2):205–210

    Article  CAS  PubMed  Google Scholar 

  31. Takano Y, Mitsuhashi H, Ueno K (2011) 1α,25-Dihydroxyvitamin D3 inhibits neutrophil recruitment in hamster model of acute lung injury. Steroids 76(12):1305–1309

    Article  CAS  PubMed  Google Scholar 

  32. Grossmann RE, Zughaier SM, Liu S et al (2012) Impact of vitamin D supplementation on markers of inflammation in adults with cystic fibrosis hospitalized for a pulmonary exacerbation. Eur J Clin Nutr 66(9):1072–1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. McCauley LA, Thomas W, Laguna TA et al (2014) Vitamin D deficiency is associated with pulmonary exacerbations in children with cystic fibrosis. Ann Am Thorac Soc 11(2):198–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Brown RK, Wyatt H, Price JF, Kelly FJ (1996) Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. Eur Respir J 9(2):334–339

    Article  CAS  PubMed  Google Scholar 

  35. Winklhofer-Roob BM, Shmerling DH, Schimek MG, Tuchschmid PE (1992) Short-term changes in erythrocyte alpha-tocopherol content of vitamin E-deficient patients with cystic fibrosis. Am J Clin Nutr 55(1):100–103

    CAS  PubMed  Google Scholar 

  36. Swann IL, Kendra JR (1998) Anaemia, vitamin E deficiency and failure to thrive in an infant. Clin Lab Haematol 20(1):61–63

    Article  CAS  PubMed  Google Scholar 

  37. Bye AM, Muller DP, Wilson J et al (1985) Symptomatic vitamin E deficiency in cystic fibrosis. Arch Dis Child 60(2):162–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Vaisman N, Tabachnik E, Shahar E, Gilai A (1996) Impaired brainstem auditory evoked potentials in patients with cystic fibrosis. Dev Med Child Neurol 38(1):59–64

    Article  CAS  PubMed  Google Scholar 

  39. Schepper J de, Hachimi-Idrissi S, Dab I, Schmedding E (1997) Nerve conduction in vitamin E deficient cystic fibrosis patients. Eur J Pediatr 156(3):251–252

    PubMed  Google Scholar 

  40. Hernandez ML, Wagner JG, Kala A et al (2013) γ-tocopherol, reduces airway neutrophil recruitment after inhaled endotoxin challenge in rats and in healthy volunteers. Free Radic Biol Med 60(0):56–62.

    Article  CAS  PubMed  Google Scholar 

  41. Durie PR (1994) Vitamin K and the management of patients with cystic fibrosis. CMAJ 151(7):933–936

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Weber P (1997) Management of osteoporosis: is there a role for vitamin K? Int J Vitam Nutr Res 67(5):350–356

    CAS  PubMed  Google Scholar 

  43. Tümmler B, Wiehlmann L, Klockgether J, Cramer N (2014) Advances in understanding Pseudomonas. F1000prime Rep 6:9

    Article  PubMed Central  PubMed  Google Scholar 

  44. Brennan S (2008) Innate immune activation and cystic fibrosis. Paediatr Respir Rev 9(4):271–279

    Article  PubMed  Google Scholar 

  45. Eickmeier O, Huebner M, Herrmann E et al (2010) Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function. Cytokine 50(2):152–157

    Article  CAS  PubMed  Google Scholar 

  46. Mall MA, Hartl D (2014) CFTR: cystic fibrosis and beyond. Eur Respir J 44(4):1042–1054

    Article  CAS  PubMed  Google Scholar 

  47. Oliver C, Watson H (2013) Omega-3 fatty acids for cystic fibrosis. Cochrane Database Syst Rev 11:CD002201

    PubMed  Google Scholar 

  48. Freedman SD, Blanco PG, Zaman MM et al (2004) Association of cystic fibrosis with abnormalities in fatty acid metabolism. N Engl J Med 350(6):560–569

    Article  CAS  PubMed  Google Scholar 

  49. Kuo PT, Huang NN, Bassett DR (1962) The fatty acid composition of the serum chylomicrons and adipose tissue of children with cystic fibrosis of the pancreas. J Pediatr 60:394–403

    Article  CAS  PubMed  Google Scholar 

  50. Serhan CN, Levy B (2003) Novel pathways and endogenous mediators in anti-inflammation and resolution. Chem Immunol Allergy 83:115–145

    Article  CAS  PubMed  Google Scholar 

  51. Starosta V, Ratjen F, Rietschel E et al (2006) Anti-inflammatory cytokines in cystic fibrosis lung disease. Eur Respir J 28(3):581–587

    Article  CAS  PubMed  Google Scholar 

  52. Ringholz FC, Buchanan PJ, Clarke DT et al (2014) Reduced 15-lipoxygenase 2 and lipoxin A4/leukotriene B4 ratio in children with cystic fibrosis. Eur Respir J 44(2):394–404

    Article  CAS  PubMed  Google Scholar 

  53. Mattoscio D, Evangelista V, Cristofaro R de et al (2010) Cystic fibrosis transmembrane conductance regulator (CFTR) expression in human platelets: impact on mediators and mechanisms of the inflammatory response. FASEB J 24(10):3970–3980

    Article  CAS  PubMed  Google Scholar 

  54. Di Nardo G, Oliva S, Menichella A et al (2014) Lactobacillus reuteri ATCC55730 in cystic fibrosis. J Pediatr Gastroenterol Nutr 58(1):81–86

    Article  Google Scholar 

  55. Madan JC, Koestler DC, Stanton BA et al (2012) Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. MBio 3(4):e00251-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Duytschaever G, Huys G, Bekaert M et al (2011) Cross-sectional and longitudinal comparisons of the predominant fecal microbiota compositions of a group of pediatric patients with cystic fibrosis and their healthy siblings. Appl Environ Microbiol 77(22):8015–8024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Del Campo R, Garriga M, Pérez-Aragón A et al (2014) Improvement of digestive health and reduction in proteobacterial populations in the gut microbiota of cystic fibrosis patients using a Lactobacillus reuteri probiotic preparation: a double blind prospective study. J Cyst Fibros 13(6):716–722

    Article  Google Scholar 

  58. Lee JM, Leach ST, Katz T et al (2012) Update of faecal markers of inflammation in children with cystic fibrosis. Mediators Inflamm 2012:948367

    PubMed Central  PubMed  Google Scholar 

  59. Gillanders LJ, Elborn JS, Gilpin DF et al (2011) The airway microbiome in cystic fibrosis: challenges for therapy. Therapy 8(6):645–660

    Article  Google Scholar 

  60. Zemanick ET, Sagel SD, Harris JK (2011) The airway microbiome in cystic fibrosis and implications for treatment. Curr Opin Pediatr 23(3):319–324

    Article  PubMed  Google Scholar 

  61. Smith RS, Iglewski BH (2003) Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 112(10):1460–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Matsumoto T, Ishikawa H, Tateda K et al (2008) Oral administration of Bifidobacterium longum prevents gut-derived Pseudomonas aeruginosa sepsis in mice. J Appl Microbiol 104(3):672–680

    Article  CAS  PubMed  Google Scholar 

  63. Bruzzese E, Raia V, Spagnuolo MI et al (2007) Effect of Lactobacillus GG supplementation on pulmonary exacerbations in patients with cystic fibrosis: a pilot study. Clin Nutr 26(3):322–328

    Article  PubMed  Google Scholar 

  64. Weiss B, Bujanover Y, Yahav Y et al (2010) Probiotic supplementation affects pulmonary exacerbations in patients with cystic fibrosis: a pilot study. Pediatr Pulmonol 45(6):536–540

    PubMed  Google Scholar 

  65. Alexandre Y, Le Berre R, Barbier G, Le Blay G (2014) Screening of Lactobacillus spp. for the prevention of Pseudomonas aeruginosa pulmonary infections. BMC Microbiol 14:107

    Article  PubMed Central  PubMed  Google Scholar 

  66. Harata G, He F, Kawase M et al (2009) Differentiated implication of Lactobacillus GG and L. gasseri TMC0356 to immune responses of murine Peyer’s patch. Microbiol Immunol 53(8):475–480

    Article  CAS  PubMed  Google Scholar 

  67. Koizumi S, Wakita D, Sato T et al (2008) Essential role of Toll-like receptors for dendritic cell and NK1.1(+) cell-dependent activation of type 1 immunity by Lactobacillus pentosus strain S-PT84. Immunol Lett 120(1–2):14–19

  68. Fink LN, Zeuthen LH, Christensen HR et al (2007) Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses. Int Immunol 19(12):1319–1327

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. O. Eickmeier, D. Fußbroich, S. van Dullemen, C. Hügel, C. Smaczny und M.A. Rose geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Eickmeier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eickmeier, O., Fußbroich, D., van Dullemen, S. et al. Entzündung und Ernährung bei Mukoviszidose. Pneumologe 12, 148–154 (2015). https://doi.org/10.1007/s10405-014-0865-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-014-0865-x

Schlüsselwörter

Keywords

Navigation