Skip to main content
Log in

Fortschritte in der bakteriologischen und molekularen Diagnostik der Tuberkulose

Advances in bacteriological and molecular diagnostics of tuberculosis

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Die Einführung neuer diagnostischer Verfahren wie z. B. der Xpert-MTB/RIF-Test haben die Zukunftsperspektiven verbessert. Dieser Test identifiziert gleichzeitig Mycobacterium tuberculosis und dessen Resistenz gegen Rifampicin mit Hilfe einer automatischen Amplifikation der Nukleinsäuren. Der Xpert-MTB/RIF-Test wird von der WHO seit 2010 empfohlen und kann bei pulmonalen und extrapulmonalen Patientenmaterial angewendet werden. Unter den schnellen molekularen Methoden ist ein neuer Test evaluiert worden, der Genotype-MTBDRsl-Assay (Hain Life Sciences), mit dem resistenzassoziierte Mutationen gegenüber Fluorquinolonen, injizierbare Antibiotika (Amikacin, Capreomycin und Kanamycin) und Ethambutol detektiert werden können. Eine Alternative für das TB-Screening könnte ein Urintest sein, der das TB-spezifische LAM-Antigen detektiert. Dieser Test ist allerdings für HIV-positive Patienten mit sehr geringer CD4-Zellzahl limitiert. Die Entwicklung von neuen diagnostischen Verfahren war in jüngster Zeit sehr erfolgreich. Die Sequenzierung von M.-tuberculosis-Genomen ist ebenfalls ein wichtiger Ansatz, um neue Antibiotikaresistenzen zu identifizieren und die Verbreitung der Krankheit auf lokaler Ebene und in der Population zu verfolgen. Trotzdem fehlt immer noch ein schneller, sensitiver und kostengünstiger „Point-of-care“-Test.

Abstract

Tuberculosis has been identified for a long time as a global health problem which should be eliminated with combined efforts in the foreseeable future. Improved detection of patients, earlier diagnosis and identification of resistance will be crucial. This article gives an overview of recent and new technologies for the diagnosis of tuberculosis and drug resistance. New diagnostic procedures released in recent years have improved this perspective, such as the development of the Xpert MTB/RIF assay, employing automated nucleic acid amplification to simultaneously detect Mycobacterium tuberculosis bacteria and rifampicin resistance. The World Health Organization (WHO) endorsed the Xpert MTB/RIF technology at the end of 2010. The technology is applicable to pulmonary and extrapulmonary samples. In the field of rapid molecular detection of drug resistance the new Genotype MTBDRsl assay was evaluated to detect commonly known resistance associated with fluoroquinolone, second line injectable drugs (e.g. amikacin, capreomycin and kanamycin) and ethambutol. An alternative for tuberculosis screening but restricted to HIV infected patients with very low CD4 cell counts may be a urine antigen test, which determines TB-LAM Ag. The development of the new diagnostics is undoubtedly a landmark event and whole genome sequencing of M. tuberculosis offers a powerful new approach to the identification of drug resistance and to map transmission at community and population levels. Nevertheless, a rapid, sensitive and affordable point of care diagnostic test is still urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. World Health Organisation (2012) Global tuberculosis report. http://www.who.int/tb/publications/global_report/en/

  2. World Health Organization (2010) Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response. http://whqlibdoc.who.int/publications/2010/9789241599191_eng.pdf

  3. World Health Organization (2010) Commercial serodiagnostic tests for diagnosis of tuberculosis. Expert group meeting report. http://whqlibdoc.who.int/hq/2011/WHO_HTM_TB_2011.14_eng.pdf

  4. World Health Organisation (2011) Fluorescent light-emitting diode (LED) microscopy for diagnosis of tuberculosis. WHO Policy statement. http://whqlibdoc.who.int/publications/2011/9789241501613_eng.pdf

  5. Hamasur B, Bruchfeld J, Haile et al (2001) Rapid diagnosis of tuberculosis by detection of mycobacterial lipoarabinomannan in urine. J Microbiol Methods 45:41–52

    Article  CAS  PubMed  Google Scholar 

  6. Lawn SD, Kerkhoff AD, Vogt M et al (2012) Diagnostic accuracy of a low-cost, urine antigen, point-of-care screening assay for HIV-associated pulmonary tuberculosis before antiretroviral therapy: a descriptive study. Lancet Infect Dis 12:201–209

    Article  PubMed Central  PubMed  Google Scholar 

  7. Boehme CC, Nabeta P, Henostroza G et al (2007) Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol 45:1936–1940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Boehme CC, Nabeta P, Hillemann D et al (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363:1005–1015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Blakemore R, Story E, Helb D et al (2010) Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol 48:2495–2501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Helb D, Jones M, Story E et al (2010) Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 48:229–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. World Health Organisation (2011) Nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF System. WHO Policy statement. http://whqlibdoc.who.int/publications/2011/9789241501545_eng.pdf

  12. Chang K, Lu W, Wang J et al (2012) Rapid and effective diagnosis of tuberculosis and rifampicin resistance with Xpert MTB/RIF assay: a meta-analysis. J Infect 64:580–588

    Article  PubMed  Google Scholar 

  13. Steingart KR, Sohn H, Schiller I et al (2013) Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev

  14. Vadwai V, Boehme C, Nabeta P et al (2011) Xpert MTB/RIF: a new pillar in diagnosis of extrapulmonary tuberculosis? J Clin Microbiol 49:2540–2545

    Article  PubMed Central  PubMed  Google Scholar 

  15. Causse M, Ruiz P, Gutiérrez-Aroca JB et al (2011) Comparison of two molecular methods for rapid diagnosis of extrapulmonary tuberculosis. J Clin Microbiol 49:3065–3067

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hillemann D, Rüsch-Gerdes S, Boehme C et al (2011) Rapid molecular detection of extrapulmonary tuberculosis by the automated GeneXpert MTB/RIF system. J Clin Microbiol 49:1202–1205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Van Rie A, Mellet K, John MA et al (2012) False-positive rifampicin resistance on Xpert® MTB/RIF: case report and clinical implications. Int J Tuberc Lung Dis 16:206–208

    Article  Google Scholar 

  18. World Health Organisation (2011) Rapid Implementation of the Xpert MTB/RIF diagnostic test. Technical and Operational ‚How-to’. Practical consierations. WHO. http://libdoc.who.int/publications/2011/9789241501569_eng.pdf

  19. World Health Organization (2008) World Health Organization Policy guidance on drug-susceptibility testing (DST) of second-line antituberculosis drugs. WHO/HTM/TB/2008.392. http://whqlibdoc.who.int/hq/2008/WHO_HTM_TB_2008.392_eng.pdf

  20. Rüsch-Gerdes S, Pfyffer GE, Casal M et al (2006) Multicenter laboratory validation of the BACTEC MGIT 960 technique for testing susceptibilities of Mycobacterium tuberculosis to classical second-line drugs and newer antimicrobials. J Clin Microbiol 44:688–692

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hillemann D, Rüsch-Gerdes S, Richter E (2009) Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin, capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 47:1767–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. World Health Organisation (o J) The use of molecular line probe assay for the detection of resistance to second-line anti-tuberculosis drugs. Expert group meeting report February 2013. http://apps.who.int/iris/bitstream/10665/78099/1/WHO_HTM_TB_2013.01.eng.pdf

  23. Bonetta L (2006) Genome sequencing in the fast lane. Nat Methods 2:141–147

    Article  Google Scholar 

  24. Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Daum LT, Rodriguez JD, Worthy SA et al (2012) Next-generation ion torrent sequencing of drug resistance mutations in Mycobacterium tuberculosis strains. J Clin Microbiol 50:3831–3837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Richter E, Rüsch-Gerdes S, Hillemann D (2007) First linezolid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 51:1534–1536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hillemann D, Rüsch-Gerdes S, Richter E (2008). In vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants. Antimicrob Agents Chemother 52:800–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Beckert P, Hillemann D, Kohl TA (2012) rplC T460C identified as a dominant mutation in linezolid-resistant Mycobacterium tuberculosis strains. Antimicrob Agents Chemother 56:2743–2745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Locke JB, Hilgers M, Shaw KJ (2009) Mutations in ribosomal protein L3 are associated with oxazolidinone resistance in staphylococci of clinical origin. Antimicrob Agents Chemother 53:5275–5278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. D. Hillemann, E. Richter, S. Andres und S. Rüsch-Gerdes geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hillemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillemann, D., Richter, E., Andres, S. et al. Fortschritte in der bakteriologischen und molekularen Diagnostik der Tuberkulose. Pneumologe 11, 28–33 (2014). https://doi.org/10.1007/s10405-013-0695-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-013-0695-2

Schlüsselwörter

Keywords

Navigation