Der Pneumologe

, Volume 10, Supplement 1, pp 16–22 | Cite as

Asthma bronchiale

Fortschritte in den letzten 10 Jahren und Perspektiven für die weitere Entwicklung
Leitthema
  • 332 Downloads

Zusammenfassung

Asthma bronchiale ist eine komplexe Erkrankung mit verschiedenen Phänotypen, von denen einige von spezifischen Interventionen profitieren, während andere davon sogar Nachteile erleiden könnten. Insofern wird es wichtiger, bei klinischen Studien mit spezifischeren Therapien die Studienteilnehmer so auszuwählen, dass potentielle, phänotypdeterminierte Non-Responder das vorteilhafte Abschneiden von Respondern nicht nivellieren. Hier deuten sich beim Asthma erste Schritte zu einer personalisierten Medizin an. Unterstützt wird diese Entwicklung durch verschiedene, spezifische Interventionsmöglichkeiten, die von humanisierten Anti-Zytokin- oder Anti-Rezeptor-Antikörpern über kleine Moleküle bis zur selektiven Rezeptorblockade reichen. Bis dahin bleiben Fix-Kombinationen aus inhalativem Kortikosteroid und (ultra-)langwirksamem β2-Agonisten das „One-size-fits-all“-Prinzip. Zukünftige Forschung wird die Ergebnisse von kontrollierten Studien an größeren Patientenpopulationen in nichtinterventionellen Studien auf ihre Praxistauglichkeit überprüfen müssen. Die Forschung zur Asthmatherapie umfasst vielversprechende Entwicklungen. Bessere Klassifizierung, gepaart mit zunehmend besserem Verständnis der zugrundeliegenden Mechanismen, darauf aufbauende, individualisierte Therapien und deren umfassende klinische Prüfung auf Praxistauglichkeit lassen hoffen, dass sich Morbidität und Mortalität des Asthma weiter senken lassen und die Erkrankten ein normales Leben führen können.

Schlüsselwörter

Phänotypen Zytokine Antikörper CRTH2-Rezeptor Therapie 

Bronchial asthma

Advances in the last decade and perspectives for further development

Abstract

Bronchial asthma is a complex disease with various phenotypes some of which might profit from specific interventions while for others they can be disadvantageous. It will therefore become increasingly important to carefully select study participants for such specific therapies according to phenotype (or possibly endotype) and to exclude potential, phenotype-determined non-responders with a potential to negatively influence study results. Thus, identifying specific phenotypes is a first step towards a personalized medicine approach in the treatment of asthma. This approach will be supported by the development of many highly specific interventions which include humanized anti-cytokine or anti-receptor antibodies as well as small molecules and selective receptor blockers. Until these interventions reach the patient, fixed-dose combinations with inhaled corticosteroids and (ultra) long-acting beta-2 agonists will remain as the current one-size-fits-all approach.

Future research will also have to take into account that results from controlled studies will have to be complemented by large, non-interventional studies to determine the clinical effectiveness of specific interventions. The current research in asthma includes a number of highly promising developments. Better classification of asthma combined with an improved understanding of the underlying mechanisms and phenotype guided, individualized therapy which has been tested for clinical effectiveness raise hope that asthma morbidity and mortality can be further reduced and sufferers can lead an increasingly normal life with a controlled disease.

Keywords

Phenotypes Cytokine Antibodies Chemoattractant receptor-homologous molecule expressed on TH2 cells protein, human Therapy 

Literatur

  1. 1.
    Haahtela T, Tuomisto LE, Pietinalho A et al (2006) A 10 year asthma programme in Finland: major change for the better. Thorax 61:663–670PubMedCrossRefGoogle Scholar
  2. 2.
    Bateman ED, Hurd SS, Barnes PJ et al (2008) Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J 31:143–178PubMedCrossRefGoogle Scholar
  3. 3.
    Urbano FL (2008) Review of the NAEPP 2007 Expert Panel Report (EPR-3) on asthma diagnosis and treatment guidelines. J Manag Care Pharm 14:41–49PubMedGoogle Scholar
  4. 4.
    o A (2008) British guideline on the management of asthma. Thorax 63(Suppl 4):iv1–iv121CrossRefGoogle Scholar
  5. 5.
    Papadopoulos NG, Arakawa H, Carlsen KH et al (2012) International consensus on (ICON) pediatric asthma. Allergy 67:976–997PubMedCrossRefGoogle Scholar
  6. 6.
    Bacharier LB, Boner A, Carlsen KH et al (2008) Diagnosis and treatment of asthma in childhood: a PRACTALL consensus report. Allergy 63:5–34PubMedCrossRefGoogle Scholar
  7. 7.
    Buhl R, Berdel D, Criee CP et al (2006) Guidelines for diagnosis and treatment of asthma patients. Pneumologie 60:139–177PubMedCrossRefGoogle Scholar
  8. 8.
    Herland K, Akselsen JP, Skjonsberg OH et al (2005) How representative are clinical study patients with asthma or COPD for a larger „real life“ population of patients with obstructive lung disease? Respir Med 99:11–19PubMedCrossRefGoogle Scholar
  9. 9.
    Price D, Musgrave SD, Shepstone L et al (2011) Leukotriene antagonists as first-line or add-on asthma-controller therapy. N Engl J Med 364:1695–1707PubMedCrossRefGoogle Scholar
  10. 10.
    Agache I, Akdis C, Jutel M et al (2012) Untangling asthma phenotypes and endotypes. Allergy 67:835–846PubMedCrossRefGoogle Scholar
  11. 11.
    Lotvall J, Akdis CA, Bacharier LB et al (2011) Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 127:355–360PubMedCrossRefGoogle Scholar
  12. 12.
    Walker C, Bode E, Boer L et al (1992) Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage. Am Rev Respir Dis 146:109–115PubMedCrossRefGoogle Scholar
  13. 13.
    White AA, Stevenson DD (2012) Aspirin-exacerbated respiratory disease: update on pathogenesis and desensitization. Semin Respir Crit Care Med 33:588–594PubMedCrossRefGoogle Scholar
  14. 14.
    Haldar P, Pavord ID, Shaw DE et al (2008) Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 178:218–224PubMedCrossRefGoogle Scholar
  15. 15.
    Haldar P, Pavord ID (2007) Noneosinophilic asthma: a distinct clinical and pathologic phenotype. J Allergy Clin Immunol 119:1043–1052PubMedCrossRefGoogle Scholar
  16. 16.
    Horn BR, Robin ED, Theodore J et al (1975) Total eosinophil counts in the management of bronchial asthma. N Engl J Med 292:1152–1155PubMedCrossRefGoogle Scholar
  17. 17.
    Virchow JC Jr, Holscher U, Virchow C Sr (1992) Sputum ECP levels correlate with parameters of airflow obstruction. Am Rev Respir Dis146:604–606CrossRefGoogle Scholar
  18. 18.
    Smith AD, Taylor DR (2005) Is exhaled nitric oxide measurement a useful clinical test in asthma? Curr Opin Allergy Clin Immunol 5:49–56PubMedCrossRefGoogle Scholar
  19. 19.
    Simpson JL, Scott R, Boyle MJ et al (2006) Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology 11:54–61PubMedCrossRefGoogle Scholar
  20. 20.
    Fleming L, Tsartsali L, Wilson N et al (2012) Sputum inflammatory phenotypes are not stable in children with asthma. Thorax 67:675–681PubMedCrossRefGoogle Scholar
  21. 21.
    Virchow JC Jr, Kroegel C, Walker C et al (1994) Cellular and immunological markers of allergic and intrinsic bronchial asthma. Lung 172:313–334PubMedCrossRefGoogle Scholar
  22. 22.
    Rackemann FM, Mallory TB (1941) Intrinsic asthma. Trans Am Clin Climatol Assoc 57:60–73PubMedGoogle Scholar
  23. 23.
    Green RH, Brightling CE, McKenna S et al (2002) Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 360:1715–1721PubMedCrossRefGoogle Scholar
  24. 24.
    Sont JK, Willems LN, Bel EH et al (1999) Clinical control and histopathologic outcome of asthma when using airway hyperresponsiveness as an additional guide to long-term treatment. The AMPUL Study Group. Am J Respir Crit Care Med 159:1043–1051PubMedCrossRefGoogle Scholar
  25. 25.
    Smith AD, Cowan JO, Brassett KP et al (2005) Exhaled nitric oxide: a predictor of steroid response. Am J Respir Crit Care Med 172:453–459PubMedCrossRefGoogle Scholar
  26. 26.
    Smith AD, Cowan JO, Brassett KP et al (2005) Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med 352:2163–2173PubMedCrossRefGoogle Scholar
  27. 27.
    Gogate S, Katial R (2008) Pediatric biomarkers in asthma: exhaled nitric oxide, sputum eosinophils and leukotriene E4. Curr Opin Allergy Clin Immunol 8:154–157PubMedCrossRefGoogle Scholar
  28. 28.
    Petsky HL, Cates CJ, Lasserson TJ et al (2012) A systematic review and meta-analysis: tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils). Thorax 67:199–208PubMedCrossRefGoogle Scholar
  29. 29.
    Szefler SJ, Mitchell H, Sorkness CA et al (2008) Management of asthma based on exhaled nitric oxide in addition to guideline-based treatment for inner-city adolescents and young adults: a randomised controlled trial. Lancet 372:1065–1072PubMedCrossRefGoogle Scholar
  30. 30.
    Bousquet J, Boulet LP, Peters MJ et al (2007) Budesonide/formoterol for maintenance and relief in uncontrolled asthma vs. high-dose salmeterol/fluticasone. Respir Med 101:2437–2446PubMedCrossRefGoogle Scholar
  31. 31.
    Hasford J, Uricher J, Tauscher M et al (2010) Persistence with asthma treatment is low in Germany especially for controller medication – a population based study of 483,051 patients. Allergy 65:347–534PubMedCrossRefGoogle Scholar
  32. 32.
    Fischer A, Stegemann J, Scheuch G et al (2009) Novel devices for individualized controlled inhalation can optimize aerosol therapy in efficacy, patient care and power of clinical trials. Eur J Med Res 14(Suppl 4):71–77PubMedCrossRefGoogle Scholar
  33. 33.
    Hasford J, Virchow JC (2006) Excess mortality in patients with asthma on long-acting beta2-agonists. Eur Respir J 28:900–902PubMedCrossRefGoogle Scholar
  34. 34.
    Sears MR, Ottosson A, Radner F et al (2009) Long-acting beta-agonists: a review of formoterol safety data from asthma clinical trials. Eur Respir J 33:21–32PubMedCrossRefGoogle Scholar
  35. 35.
    Kramer JM (2009) Balancing the benefits and risks of inhaled long-acting beta-agonists–the influence of values. N Engl J Med 360:1592–1595PubMedCrossRefGoogle Scholar
  36. 36.
    Bjermer L, Bisgaard H, Bousquet J et al (2003) Montelukast and fluticasone compared with salmeterol and fluticasone in protecting against asthma exacerbation in adults: one year, double blind, randomised, comparative trial. BMJ 327:891PubMedCrossRefGoogle Scholar
  37. 37.
    Price DB, Hernandez D, Magyar P et al (2003) Randomised controlled trial of montelukast plus inhaled budesonide versus double dose inhaled budesonide in adult patients with asthma. Thorax 58:211–216PubMedCrossRefGoogle Scholar
  38. 38.
    Virchow JC Jr, Prasse A, Naya I et al (2000) Zafirlukast improves asthma control in patients receiving high-dose inhaled corticosteroids. Am J Respir Crit Care Med 162:578–585CrossRefGoogle Scholar
  39. 39.
    Virchow JC, Mehta A, Ljungblad L et al (2010) A subgroup analysis of the MONICA study: a 12-month, open-label study of add-on montelukast treatment in asthma patients. J Asthma 47:986–993PubMedGoogle Scholar
  40. 40.
    Virchow JC, Mehta A, Ljungblad L et al (2010) Add-on montelukast in inadequately controlled asthma patients in a 6-month open-label study: the MONtelukast In Chronic Asthma (MONICA) study. Respir Med 104:644–651PubMedCrossRefGoogle Scholar
  41. 41.
    Humbert M, Beasley R, Ayres J et al (2005) Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 60:309–316PubMedCrossRefGoogle Scholar
  42. 42.
    Burch J, Griffin S, McKenna C et al (2012) Omalizumab for the treatment of severe persistent allergic asthma in children aged 6–11 years: a NICE single technology appraisal. Pharmacoeconomics 30:991–1004PubMedCrossRefGoogle Scholar
  43. 43.
    Castro M, Rubin AS, Laviolette M et al (2010) Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am J Respir Crit Care Med 181:116–124PubMedCrossRefGoogle Scholar
  44. 44.
    Niggemann B, Jacobsen L, Dreborg S et al (2006) Five-year follow-up on the PAT study: specific immunotherapy and long-term prevention of asthma in children. Allergy 61:855–859PubMedCrossRefGoogle Scholar
  45. 45.
    Virchow JC, Lommatzsch M (2007) Anticholinergic agents in asthma. In: Polosa R, Holgate ST (Hrsg) Asthma: current strategies. Clinical Publishing, S 79–90Google Scholar
  46. 46.
    Park HW (2012) The role of tiotropium in the management of asthma. Asia Pac Allergy 2:109–114PubMedCrossRefGoogle Scholar
  47. 47.
    Kerstjens HA, Engel M, Dahl R et al (2012) Tiotropium in asthma poorly controlled with standard combination therapy. N Engl J Med 367:1198–207PubMedCrossRefGoogle Scholar
  48. 48.
    Peters SP, Kunselman SJ, Icitovic N et al (2010) Tiotropium bromide step-up therapy for adults with uncontrolled asthma. N Engl J Med 363:1715–1726PubMedCrossRefGoogle Scholar
  49. 49.
    Pfeffer PE, Hawrylowicz CM (2012) Vitamin D and lung disease. Thorax 67:1018–1020PubMedCrossRefGoogle Scholar
  50. 50.
    Poon AH, Laprise C, Lemire M et al (2004) Association of vitamin D receptor genetic variants with susceptibility to asthma and atopy. Am J Respir Crit Care Med 170:967–973PubMedCrossRefGoogle Scholar
  51. 51.
    Bousquet J, Aubier M, Sastre J et al (2006) Comparison of roflumilast, an oral anti-inflammatory, with beclomethasone dipropionate in the treatment of persistent asthma. Allergy 61:72–78PubMedCrossRefGoogle Scholar
  52. 52.
    Balzar S, Fajt ML, Comhair SA et al (2011) Mast cell phenotype, location, and activation in severe asthma. Data from the Severe Asthma Research Program. Am J Respir Crit Care Med 183:299–309PubMedCrossRefGoogle Scholar
  53. 53.
    Barnes N, Pavord I, Chuchalin A et al (2012) A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin Exp Allergy 42:38–48PubMedCrossRefGoogle Scholar
  54. 54.
    Haldar P, Brightling CE, Hargadon B et al (2009) Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 360:973–984PubMedCrossRefGoogle Scholar
  55. 55.
    Castro M, Mathur S, Hargreave F et al (2011) Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med 184:1125–1132PubMedCrossRefGoogle Scholar
  56. 56.
    Busse WW, Katial R, Gossage D et al (2010) Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol 125:1237–1244PubMedCrossRefGoogle Scholar
  57. 57.
    Wenzel S, Wilbraham D, Fuller R et al (2007) Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370:1422–1431PubMedCrossRefGoogle Scholar
  58. 58.
    Parker JM, Oh CK, LaForce C et al (2011) Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm Med 11:14PubMedCrossRefGoogle Scholar
  59. 59.
    Papp KA, Leonardi C, Menter A et al (2012) Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med 366:1181–1189PubMedCrossRefGoogle Scholar
  60. 60.
    Wenzel SE, Barnes PJ, Bleecker ER et al (2009) A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med 179:549–558PubMedCrossRefGoogle Scholar
  61. 61.
    Brusselle GG, Vanderstichele C, Jordens P et al (2013) Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax 68:322–329PubMedCrossRefGoogle Scholar
  62. 62.
    Simpson JL, Powell H, Boyle MJ et al (2008) Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med 177:148–155PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Innere MedizinUniversitätsklinikum RostockRostockDeutschland

Personalised recommendations