Skip to main content
Log in

Neue Ansätze in der Therapie der Tuberkulose

New approaches to the treatment of tuberculosis

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Die Therapie der Tuberkulose ist heute gut etabliert und in der Regel gut wirksam, aber die praktische Führung der Behandlung ist nicht ohne Probleme. Nebenwirkungen, Kosten, Dauer und Begleitkrankheiten erschweren die Therapie und sind Ursachen für unvollständige Medikamenteneinnahme, Rückfälle und Resistenzbildung. Da die resistenten Formen der Tuberkulose viel schwieriger zu behandeln sind als die übliche Tuberkulose, betont die WHO zu Recht die Notwendigkeit, der Resistenzentwicklung vorzubeugen. Neue Therapiemöglichkeiten, sei es mit schon existierenden Medikamenten, mit neuen Präparaten oder durch andere Verabreichungswege (wie z. B. per Inhalation) werden heute intensiv erforscht und könnten bald eine Verkürzung der Therapiedauer bewirken.

Abstract

The therapy of tuberculosis is currently well defined and usually efficient, but the management of tuberculosis in practice is not without problems. Adverse events, costs, duration of treatment, and concomitant diseases may be the cause for incomplete intake of the medication, relapse, and development of drug resistance. As tuberculosis due to resistant mycobacteria is much more difficult to treat, the World Health Organization insists rightly on the necessity of preventing the development of such resistances. New therapeutic options are being explored, be it by the use of existing drugs, with new drugs, or by administration of drugs in innovative forms (for instance by inhalation) and could soon lead to a shortening of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Amaral L, Boeree MJ, Gillespie SH et al (2010) Thioridazine cures extensively drug-resistant tuberculosis (XDR-TB) and the need for global trials is now! Int J Antimicrob Agents 35(6):524–526

    Article  PubMed  CAS  Google Scholar 

  2. Caminero JA (2008) Likelihood of generating MDR-TB and XDR-TB under adequate National Tuberculosis Control Programme implementation. Int J Tuberc Lung Dis 12(8):869–877

    PubMed  CAS  Google Scholar 

  3. Caminero JA, Sotgiu G, Zumla A et al (2010) Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis 10(9):621–629

    Article  PubMed  CAS  Google Scholar 

  4. Cheung BK, Chan MM, Yim HC et al (2009) Immunotherapy of mycobacterial infections: a cell and molecular model. Hong Kong Med J 15(3 Suppl 4):32–36

    PubMed  CAS  Google Scholar 

  5. Conde MB, Efron A, Loredo C et al (2009) Moxifloxacin versus ethambutol in the initial treatment of tuberculosis: a double-blind, randomised, controlled phase II trial. Lancet 373(9670):1183–1189

    Article  PubMed  CAS  Google Scholar 

  6. Condos R, Rom WN, Schluger NW et al (1997) Treatment of multidrug-resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet 349(9064):1513–1515

    Article  PubMed  CAS  Google Scholar 

  7. Cox HS, Ford N, Reeder JC et al (2009) Are we really that good at treating tuberculosis? Lancet Infect Dis 9(3):138–139

    Article  PubMed  Google Scholar 

  8. Diacon AH, Patientia RF, Venter A et al (2007) Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob Agents Chemother 51(8):2994–2996

    Article  PubMed  CAS  Google Scholar 

  9. Diacon AH, Pym A, Grobusch M et al (2009) The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med 360(23):2397–2405

    Article  PubMed  CAS  Google Scholar 

  10. Dorman SE, Johnson JL, Goldberg S et al (2009) Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am J Respir Crit Care Med 180(3):273–280

    Article  PubMed  CAS  Google Scholar 

  11. Fox W, Ellard GA, Mitchison DA et al (1999) Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis 3(10 Suppl 2):S231–S279

    PubMed  CAS  Google Scholar 

  12. Garcia-Contreras L, Sung JC, Muttil P et al (2010) Dry powder PA-824 aerosols for treatment of tuberculosis in guinea pigs. Antimicrob Agents Chemother 54(4):1436–1442

    Article  PubMed  CAS  Google Scholar 

  13. Ginsberg AM, Laurenzi MW, Rouse DJ et al (2009) Safety, tolerability, and pharmacokinetics of PA-824 in healthy subjects. Antimicrob Agents Chemother 53(9):3720–3725

    Article  PubMed  CAS  Google Scholar 

  14. Ginsberg AM, Spigelman M (2007) Challenges in tuberculosis drug research and development. Nat Med 13(3):290–294

    Article  PubMed  CAS  Google Scholar 

  15. Hauer B, Castell S, Loddenkemper R (2011) Resistente Tuberkulose. Zunehmende Probleme und Lösungsansätze. Pneumologe 8(1):25–31. DOI 10.1007/s10405-010-0401

    Article  Google Scholar 

  16. Hugonnet JE, Tremblay LW, Boshoff HI et al (2009) Meropenem-clavulanate is effective against extensively drug-resistant mycobacterium tuberculosis. Science 323(5918):1215–1218

    Article  PubMed  CAS  Google Scholar 

  17. Johnson JL, Hadad DJ, Dietze R et al (2009) Shortening treatment in adults with noncavitary tuberculosis and 2-month culture conversion. Am J Respir Crit Care Med 180(6):558–563

    Article  PubMed  Google Scholar 

  18. Kimerling ME, Kluge H, Vezhnina N et al (1999) Inadequacy of the current WHO re-treatment regimen in a central Siberian prison: treatment failure and MDR-TB. Int J Tuberc Lung Dis 3(5):451–453

    PubMed  CAS  Google Scholar 

  19. Koh WJ, Kwon OJ, Gwak H et al (2009) Daily 300 mg dose of linezolid for the treatment of intractable multidrug-resistant and extensively drug-resistant tuberculosis. J Antimicrob Chemother 64(2):388–391

    Article  PubMed  CAS  Google Scholar 

  20. Lew W, Pai M, Oxlade O et al (2008) Initial drug resistance and tuberculosis treatment outcomes: systematic review and meta-analysis. Ann Intern Med 149(2):123–134

    PubMed  Google Scholar 

  21. Lienhardt C, Vernon A, Raviglione MC (2010) New drugs and new regimens for the treatment of tuberculosis: review of the drug development pipeline and implications for national programmes. Curr Opin Pulm Med 16(3):186–193

    PubMed  CAS  Google Scholar 

  22. Menzies D, Benedetti A, Paydar A et al (2009) Effect of duration and intermittency of rifampin on tuberculosis treatment outcomes: a systematic review and meta-analysis. PLoS Med 6(9):e1000146

    Article  PubMed  Google Scholar 

  23. Migliori GB, Eker B, Richardson MD et al (2009) A retrospective TBNET assessment of linezolid safety, tolerability and efficacy in multidrug-resistant tuberculosis. Eur Respir J 34(2):387–393

    Article  PubMed  CAS  Google Scholar 

  24. Muttil P, Wang C, Hickey AJ (2009) Inhaled drug delivery for tuberculosis therapy. Pharm Res 26(11):2401–2416

    Article  PubMed  CAS  Google Scholar 

  25. Nikonenko BV, Protopopova M, Samala R et al (2007) Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob Agents Chemother 51(4):1563–1565

    Article  PubMed  CAS  Google Scholar 

  26. Sacks LV, Pendle S, Orlovic D et al (2001) Adjunctive salvage therapy with inhaled aminoglycosides for patients with persistent smear-positive pulmonary tuberculosis. Clin Infect Dis 32(1):44–49

    Article  PubMed  CAS  Google Scholar 

  27. Schaberg T, Rebhan K, Lode H (1996) Risk factors for side-effects of isoniazid, rifampin and pyrazinamide in patients hospitalized for pulmonary tuberculosis. Eur Respir J 9(10):2026–2030

    Article  PubMed  CAS  Google Scholar 

  28. Schecter GF, Scott C, True L et al (2010) Linezolid in the treatment of multidrug-resistant tuberculosis. Clin Infect Dis 50(1):49–55

    Article  PubMed  CAS  Google Scholar 

  29. Tam CM, Chan SL, Kam KM et al (2002) Rifapentine and isoniazid in the continuation phase of a 6-month regimen. Final report at 5 years: prognostic value of various measures. Int J Tuberc Lung Dis 6(1):3–10

    PubMed  CAS  Google Scholar 

  30. Williams KN, Stover CK, Zhu T et al (2009) Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model. Antimicrob Agents Chemother 53(4):1314–1319

    Article  PubMed  CAS  Google Scholar 

  31. World Health Organization (2008) Guidelines for the programmatic management of drug-resistant tuberculosis. Emergency update 2008. O. World Health, Geneva, WHO/HTM/TB/2008.402

  32. World Health Organization (2010) Treatment of tuberculosis. Guidelines, 4. Aufl. World Health Organization, Geneva, WHO/HTM/TB/2009.420

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Zellweger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zellweger, JP. Neue Ansätze in der Therapie der Tuberkulose. Pneumologe 8, 151–154 (2011). https://doi.org/10.1007/s10405-010-0404-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-010-0404-3

Schlüsselwörter

Keywords

Navigation