Skip to main content
Log in

Materialien und Technik der nichtinvasiven Beatmung

Materials and technology for non-invasive ventilation

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Die Vielfalt der Beatmungsgeräte und der Beatmungsmodi ist nahezu unüberschaubar geworden. Versuche zur Nomenklatur und Systematik blieben unvollständig. Die hauptsächlichen Beatmungsformen bleiben die Beatmung mit Volumen- oder Druckvorgabe, wobei die Druckvorgabe die Volumenvorgabe abgelöst hat, und sich beide in sog. Hybridmodi ergänzen. Selbstlernende, kontrollierte Beatmungsmodi erweitern das Feld von assistierter, assistiert-kontrollierter und kontrollierter Beatmung.

Die Auswahl des geeigneten Beatmungssystems und die optimale Einstellung erfordern ein grundlegendes Verständnis der jeweils vorliegenden Erkrankung. Je nach Erkrankung bedarf es unterschiedlicher Einstellungen von Beatmungsmodus und Beatmungsparametern. Die individuelle Einstellung der Druckaufbau- und -abbaugeschwindigkeit kann die Effizienz und Akzeptanz fördern. Die Auswahl des Zubehörs (Schlauch, Maske) inklusive einer optimalen Atemgasklimatisierung hat ebenfalls Einfluss auf die Beatmungsqualität.

Abstract

The variety of respirators and artificial respiration modes has almost become difficult to grasp, and attempts for a nomenclature remain incomplete. The principal modes are volume-targeted and pressure-limited ventilation. Pressure-limited ventilation has replaced volume-controlled ventilation, and both are complementary in so-called hybrid modes. Self-learning controlled ventilation modes extend the field of assisted, assisted-controlled, and controlled ventilation.

The choice of a suitable ventilator system and the optimum settings requires a basic understanding of the underlying disease, which determines the different settings and parameters. Individual settings for increases and decreases in pressure can promote efficiency and compliance. The choice of accessories (tube, mask), including optimum humidification, also influences the ventilation quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Vitacca M, Barbano L, D’Anna S et al (2002) Comparison of five bilevel pressure ventilators in patients with chronic ventilatory failure: a physiologic study. Chest 122:2105–2114

    Article  PubMed  Google Scholar 

  2. Drinker P, Shaw LA (1929) An apparatus for the prolonged administration of artificial respiration: I. A design for adults and children. J Clin Invest 7:229–247

    Article  CAS  PubMed  Google Scholar 

  3. Corrado A, Gorini M (2002) Long-term negative pressure ventilation. Respir Care Clin N Am 8:545–557, v-vi

    Article  PubMed  Google Scholar 

  4. Mehta S, McCool FD, Hill NS (2001) Leak compensation in positive pressure ventilators: a lung model study. Eur Respir J 17:259–267

    Article  CAS  PubMed  Google Scholar 

  5. Storre JH, Bohm P, Dreher M, Windisch W (2006) Leak compensation during non-invasive ventilation in COPD. Eur Respir J 28(Suppl. 50) P1117

  6. Storre JH, Bohm P, Dreher M, Windisch W (2009) Clinical impact of leak compensation during non-invasive ventilation. Respir Med 103:1477–1483. Epub 2009 May 28

    Article  PubMed  Google Scholar 

  7. Jounieaux V, Aubert G, Dury M et al (1995) Effects of nasal positive-pressure hyperventilation on the glottis in normal sleeping subjects. J Appl Physiol 79:186–193

    CAS  PubMed  Google Scholar 

  8. Parreira VF, Jounieaux V, Aubert G et al (1996) Nasal two-level positive-pressure ventilation in normal subjects. Effects of the glottis and ventilation. Am J Respir Crit Care Med 153:1616–1623

    CAS  PubMed  Google Scholar 

  9. Schönhofer B, Sonneborn M, Haidl P et al (1997) Comparison of two different modes for noninvasive mechanical ventilation in chronic respiratory failure: volume versus pressure controlled device. Eur Respir J 10:184–191

    Article  PubMed  Google Scholar 

  10. Tuggey JM, Elliott MW (2005) Randomised crossover study of pressure and volume non-invasive ventilation in chest wall deformity. Thorax 60:859–864

    Article  CAS  PubMed  Google Scholar 

  11. Windisch W, Storre JH, Sorichter S, Virchow JCJ (2005) Comparison of volume- and pressure-limited NPPV at night: a prospective randomized cross-over trial. Respir Med 99:52–59

    Article  PubMed  Google Scholar 

  12. Meyer TJ, Hill NS (1994) Noninvasive positive pressure ventilation to treat respiratory failure. Ann Intern Med 120:760–770

    CAS  PubMed  Google Scholar 

  13. Simonds AK, Elliott MW (1995) Outcome of domiciliary nasal intermittent positive pressure ventilation in restrictive and obstructive disorders. Thorax 50:604–609

    Article  CAS  PubMed  Google Scholar 

  14. Leger P, Bedicam JM, Cornette A et al (1994) Nasal intermittent positive pressure ventilation. Long-term follow-up in patients with severe chronic respiratory insufficiency. Chest 105:100–105

    Article  CAS  PubMed  Google Scholar 

  15. Mehta S, Hill NS (2001) Noninvasive ventilation. Am J Respir Crit Care Med 163:540–577

    CAS  PubMed  Google Scholar 

  16. Janssens JP, Derivaz S, Breitenstein E et al (2003) Changing patterns in long-term noninvasive ventilation. Chest 123:67–79

    Article  PubMed  Google Scholar 

  17. Storre JH, Schönhofer B (2008) Noninvasive mechanical ventilation in chronic respiratory failure: ventilators and interfaces. Eur Respir Mon 41:319–337

    Google Scholar 

  18. Storre JH, Seuthe B, Fiechter R et al (2006) Average volume-assured pressure support in obesity hypo- ventilation: A randomized crossover trial. Chest 130:815–821

    Article  PubMed  Google Scholar 

  19. Janssens J, Metzger M, Sforza E (2009) Impact of volume targeting on efficacy of bi-level non-invasive ventilation and sleep in obesity-hypoventilation. Respir Med 103:165–172

    Article  PubMed  Google Scholar 

  20. Tassaux D, Gainnier M, Battisti A, Jolliet P (2005) Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 172:1283–1289

    Article  PubMed  Google Scholar 

  21. Stell IM, Paul G, Lee KC et al (2001) Noninvasive ventilator triggering in chronic obstructive pulmonary disease. A test lung comparison. Am J Respir Crit Care Med 164:2092–2097

    CAS  PubMed  Google Scholar 

  22. Battisti A, Tassaux D, Janssens JP et al (2005) Performance characteristics of 10 home mechanical ventilators in pressure-support mode: a comparative bench study. Chest 127:1784–1792

    Article  PubMed  Google Scholar 

  23. Nava S, Ambrosino N, Bruschi C et al (1997) Physiological effects of flow and pressure triggering during non-invasive mechanical ventilation in patients with chronic obstructive pulmonary disease. Thorax 52:249–254

    Article  CAS  PubMed  Google Scholar 

  24. Aslanian P, El Atrous S, Isabey D et al (1998) Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med 157:135–143

    CAS  PubMed  Google Scholar 

  25. Laier-Groeneveld G, Rasche K, Weyland W et al (1992) The oxygen cost of breathing in patients with chronic ventilatory failure. Am Rev Respir Dis 145:A155

    Google Scholar 

  26. Elliott MW, Aquilina R, Green M et al (1994) A comparison of different modes of noninvasive ventilatory support: effects on ventilation and inspiratory muscle effort. Anaesthesia 49:279–283

    Article  CAS  PubMed  Google Scholar 

  27. Flick GR, Bellamy PE, Simmons DH (1989) Diaphragmatic contraction during assisted mechanical ventilation. Chest 96:130–135

    Article  CAS  PubMed  Google Scholar 

  28. Leung P, Jubran A, Tobin MJ (1997) Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med 155:1940–1948

    CAS  PubMed  Google Scholar 

  29. Dellweg D, Schönhofer B, Haidl PM et al (2007) Short-term effect of controlled instead of assisted noninvasive ventilation in chronic respiratory failure due to chronic obstructive pulmonary disease. Respir Care 52:1734–1740

    PubMed  Google Scholar 

  30. Köhler D, Dellweg D, Barchfeld T et al (2008) Time-adaptiver Modus, eine neue Beatmungsform zur Behandlung der ventilatorischen Insuffizienz – ein selbstlernendes System. Pneumologie 62:527–532

    Article  PubMed  Google Scholar 

  31. Dellweg D, Barchfeld T, Klauke M, Eiger G (2009) Respiratory muscle unloading during auto-adaptive non-invasive ventilation. Respir Med 103:1706–1712

    Article  PubMed  Google Scholar 

  32. Marini JJ, Culver BH, Kirk W (1985) Flow resistance of exhalation valves and positive end-expiratory pressure devices used in mechanical ventilation. Am Rev Respir Dis 131:850–854

    CAS  PubMed  Google Scholar 

  33. Younes M, Kun J, Webster K, Roberts D (2002) Response of ventilator-dependent patients to delayed opening of exhalation valve. Am J Respir Crit Care Med 166:21–30

    Article  PubMed  Google Scholar 

  34. Schettino GPP, Chatmongkolchart S, Hess DR, Kacmarek RM (2003) Position of exhalation port and mask design affect CO2 rebreathing during non-invasive positive pressure ventilation. Crit Care Med 31:2178–2182

    Article  PubMed  Google Scholar 

  35. Richards GN, Cistulli PA, Sullivan CE et al (1996) Mouth leak with nasal continuous positive airway pressure increases nasal airway resistance. Am J Respir Crit Care Med 154:182–186

    CAS  PubMed  Google Scholar 

  36. Tuggey JM, Delmastro M, Elliott MW (2007) The effect of mouth leak and humidification during nasal non-invasive ventilation. Respir Med 101:1874–1879

    Article  PubMed  Google Scholar 

  37. Navalesi P, Frigerio P, Gregoretti C (2008) Interfaces und humidification in the home setting. Eur Respir Mon 41:338–349

    Google Scholar 

  38. Wenzel M, Wenzel G, Klauke M et al (2008) Charakteristik mehrerer Befeuchter für die CPAP- sowie invasive und nicht invasive Beatmungstherapie und Sauerstofflangzeittherapie unter standardisierten Bedingungen in einer Klimakammer. Pneumologie 62:324–329

    Article  CAS  PubMed  Google Scholar 

  39. Wenzel M, Klauke M, Gessenhardt F et al (2005) Sterile water is unnecessary in a continuous positive airway pressure convection-type humidifier in the treatment of obstructive sleep apnea syndrome. Chest 128:2138–2140

    Article  PubMed  Google Scholar 

  40. Mortimore IL, Whittle AT, Douglas NJ (1998) Comparison of nose and face mask CPAP therapy for sleep apnoea. Thorax 53:290–292

    Article  CAS  PubMed  Google Scholar 

  41. Teschler H, Stampa J, Ragette R et al (1999) Effect of mouth leak on effectiveness of nasal bilevel ventilatory assistance and sleep architecture. Eur Respir J 14:1251–1257

    Article  CAS  PubMed  Google Scholar 

  42. Meyer TJ, Pressman MR, Benditt J et al (1997) Air leaking through the mouth during nocturnal nasal ventilation: effect on sleep quality. Sleep 20:561–569

    CAS  PubMed  Google Scholar 

  43. Gonzalez J, Sharshar T, Hart N et al (2003) Air leaks during mechanical ventilation as a cause of persistent hypercapnia in neuromuscular disorders. Intensive Care Med 29:596–602

    PubMed  Google Scholar 

  44. Willson GN, Piper AJ, Norman M et al (2004) Nasal versus full face mask for noninvasive ventilation in chronic respiratory failure. Eur Respir J 23:605–609

    Article  CAS  PubMed  Google Scholar 

  45. Navalesi P, Fanfulla F, Frigerio P et al (2000) Physiologic evaluation of noninvasive mechanical ventilation delivered with three types of masks in patients with chronic hypercapnic respiratory failure. Crit Care Med 28:1785–1790

    Article  CAS  PubMed  Google Scholar 

  46. Elliott MW (2004) The interface: crucial for successful noninvasive ventilation. Eur Respir J 23:7–8

    Article  CAS  PubMed  Google Scholar 

  47. Meduri GU, Cook TR, Turner RE et al (1996) Noninvasive positive pressure ventilation in status asthmaticus. Chest 110:767–774

    Article  CAS  PubMed  Google Scholar 

  48. Lloyd-Owen SJ, Donaldson GC, Ambrosino N et al (2005) Patterns of home mechanical ventilation use in Europe: results from the Eurovent survey. Eur Respir J 25:1025–1031

    Article  CAS  PubMed  Google Scholar 

  49. Elliott MW (2004) The interface: crucial for successful noninvasive ventilation. Eur Respir J 23:7–8

    Article  CAS  PubMed  Google Scholar 

  50. Criner GJ, Travaline JM, Brennan KJ, Kreimer DT (1994) Efficacy of a new full face mask for noninvasive positive pressure ventilation. Chest 106:1109–1115

    Article  CAS  PubMed  Google Scholar 

  51. Dellweg D, Hochrainer D, Klauke M et al (2009) Determinants of skin contact pressure formation during non-invasive ventilation. J Biomech [Epub ahead of print]

  52. Bach JR (2002) Noninvasive mechanical ventilation. 1. edn. Hanley & Belfus, Philadelphia. p xviii

  53. Bach JR, Alba AS, Bohatiuk G et al (1987) Mouth intermittent positive pressure ventilation in the management of postpolio respiratory insufficiency. Chest 91:859–864

    Article  CAS  PubMed  Google Scholar 

  54. Bach JR, Alba AS, Saporito LR (1993) Intermittent positive pressure ventilation via the mouth as an alternative to tracheostomy for 257 ventilator users. Chest 103:174–182

    Article  CAS  PubMed  Google Scholar 

  55. Toussaint M, Steens M, Wasteels G, Soudon P (2006) Diurnal ventilation via mouthpiece: survival in end-stage Duchenne patients. Eur Respir J 28:549–555

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Siemon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siemon, K., Dellweg, D., Barchfeld, T. et al. Materialien und Technik der nichtinvasiven Beatmung. Pneumologe 7, 81–88 (2010). https://doi.org/10.1007/s10405-009-0366-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-009-0366-5

Schlüsselwörter

Keywords

Navigation