Skip to main content
Log in

Preparation of cobalt oxide and tin dioxide nanofluids and investigation of their thermophysical properties

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Nanofluids are a new generation of heat transfer fluids in many industries. The stability of nanoparticles in the base liquid is one of the main challenges in the industrial applications of nanofluids, which depends on various factors such as pH, concentration, size and morphology of nanoparticles. In this study, cobalt oxide (Co3O4) and tin dioxide (SnO2) nanoparticles were synthesized for nanofluid preparation. Nanoparticles were dispersed in base fluid using surfactants, the change of acidity and ultrasonic vibration. The structural properties of nanoparticles were characterized by Fourier transformation infrared (FTIR), X-Ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The synthesized nanoparticles stabilized with sodium dodecyl sulfate (SDS) have been used for preparation of water (25%)/ethylene glycol (75%) (both are eco-friendly)-based nanofluids. The highest stability was observed at pH of 7.5 and 8 for SnO2 and Co3O4 nanofluids, respectively. To improve the dispersion of particles, the best ultrasonication time of 450 and 360 min was obtained for SnO2 and Co3O4 nanofluid, respectively. The effects of particles concentrations ranging from 0.1 to 0.5 wt% at various temperatures of 25, 45, and 65 °C were investigated on thermophysical properties of nanofluids. Results show that both density and viscosity of samples decrease with an increase in temperature and a decrease in particle mass fraction. In addition, the specific heat capacity of nanofluids goes up with increasing temperature for all samples. We found that, the thermal conductivity of the nanofluids increased non-linearly with mass fraction and temperature, compared to the base fluid. The highest thermal conductivity enhancement for nanofluids using Co3O4 and SnO2 nanoparticles was achieved to be 59% and 72.5%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdolbaqi MK, Azmi WH, Mamat R, Sharma KV, Najafi G (2016) Experimental investigation of thermal conductivity and electrical conductivity of bioglycol - water mixture based Al2O3 nanofluid. Appl Therm Eng 102:932–941

    Article  Google Scholar 

  • Ahmadi M, Willing G (2018) Heat transfer measurment in water based nanofluids. Int J Heat Mass Transf 118:40–47

    Article  Google Scholar 

  • Albadr J, Tayal S, Alasadi M (2013) Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Stud Therm Eng 1:38–44

    Article  Google Scholar 

  • Alejandra M, Pastoriza-Gallego MJ, Luis L, Lelia M, Manuel MP (2015) Co3O4 ethylene glycol-based nanofluids: Thermal conductivity, viscosity and high pressure density. Int J Heat Mass Transf 85:54–60

    Article  Google Scholar 

  • Ali TK, Muhammad O, Ikram U, Muhammad A, Zabta KS, Malik M (2020) Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab J Chem 13:606–619

    Article  Google Scholar 

  • Andreu-Cabedo P, Mondragon R, Hernandez L, Martinez-Cuenca R, Cabedo L, Julia JE (2014) Increment of specific heat capacity of solar salt with SiO2 nanoparticles. Nanoscale Res Lett 9:582–592

    Article  Google Scholar 

  • Askari S, Koolivand H, Pourkhalil M, Lotfi R, Rashidi A (2017) Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: Experimental approach. Int Commun Heat Mass Transfer 87:30–39

    Article  Google Scholar 

  • Assael MJ, Metaxa IN, Arvanitidis J, Christofilos D, Lioutas C (2005) Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 26:647–664

    Article  Google Scholar 

  • Bahiraei M, Rahmani R, Yaghoobi A, Khodabandeh E, Mashayekhi R, Amani M (2018) Recent research contributions concerning use of nanofluids in heat exchangers: a critical review. Appl Therm Eng 133:137–159

    Article  Google Scholar 

  • Barbes B, Paramo R, Blanco E, Pastoriza-Gallego MJ, Pineiro MM, Legido JL et al (2012) Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim 111:1615–1625

    Article  Google Scholar 

  • Barbes B, Paramo R, Blanco E, Casanova C (2013) Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim 115:1883–1891

    Article  Google Scholar 

  • Bashirnezhad K, Shahab B, Mohammad RS, Marjan G, Mahidzal D, Omid M, Ahmet SD, Somchai W (2016) Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf 73:114–123

    Article  Google Scholar 

  • Beck MP, Yuan Y, Warrier P, Teja AS (2009) The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res 11:1129–1136

    Article  Google Scholar 

  • Beck MP, Yuan Y, Warrier P, Teja AS (2010) The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol+water mixtures. J Nanopart Res 12:1469–1477

    Article  Google Scholar 

  • Buonomo B, Manca O, Marinelli L, Nardini S (2015) Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl Therm Eng 91:181–190

    Article  Google Scholar 

  • Ceylan A, Jastrzembski K, Shah SI (2006) Enhanced solubility Ag-Cu nanoparticles and their thermal transport properties. Metall Mater Trans A 37:2033–2038

    Article  Google Scholar 

  • Chandrasekar M, Suresh S, Chandra Bose A (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci 34:210–216

    Article  Google Scholar 

  • Chieruzzi M, Cerritelli GF, Miliozzi A, Kenny JM (2013) Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res Lett 8:448–457

    Article  Google Scholar 

  • Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  • Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:153107

    Article  Google Scholar 

  • Chopkar M, Das PK, Manna I (2006) Synthesis and characterization of nanofluid for advanced heat transfer applications. Scr Mater 55:549–552

    Article  Google Scholar 

  • Chopkar M, Sudarshan S, Das PK, Manna I (2008) Effect of particle size on thermal conductivity of nanofluid. Metall Mater Trans A 39:1535–1542

    Article  Google Scholar 

  • De Robertis E, Cosme EHH, Neves RS, Kuznetsov AY, Campos APC, Landi SM et al (2012) Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids. Appl Therm Eng 41:10–17

    Article  Google Scholar 

  • Ding Y, Alias H, Wen D, Williams RA (2006a) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250

    Article  Google Scholar 

  • Ding Y, Alias H, Wen D, Williams RA (2006b) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49(1):240–250

    Article  Google Scholar 

  • Duangthongsuk W, Wongwises S (2009) Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Thermal Fluid Sci 33:706–714

    Article  Google Scholar 

  • Duangthongsuk W, Wongwises S (2010) An experimental study on the heat transfer performance and pressure drop of TiO2 -water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf 53(1):334–344

    Article  Google Scholar 

  • Durai DM, Prabaharan K, Sadaiyandi M, Mahendran M, Suresh S (2017) Precipitation method and characterization of cobalt oxide nanoparticles. Appl Phys A 123:264

    Article  Google Scholar 

  • Eastman JA, Choi US, Li S, Thompson LJ, Lee S (1997) Enhanced thermal conductivity through the development of nanofluids. Mater Res Soc Proc 457:3

    Article  Google Scholar 

  • Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    Article  Google Scholar 

  • Fathabad SP, Mosivand S, Kazeminezhad I (2018) Synthesis and characterization of electro-crystallized alumina nanoparticles and investigation of their application in removal of cobalt and cadmium from Seimareh and Karoon rivers in Iran. J Electron Mater 47:7034

    Article  Google Scholar 

  • Gallego A, Cacua K, Herrera B, Cabaleiro D, Piñeiro MM, Lugo L (2020) Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Adv Powder Technol 31:560–570

    Article  Google Scholar 

  • Gupta M, Vinay S, Rajesh K, Said Z (2017) A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev 74:638–670

    Article  Google Scholar 

  • Habibzadeh S, Amin K-B, Abbas AK, Yadollah M, Sasha O, Mojtaba S-N (2010) Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route. Chem Eng J 156:471–478

    Article  Google Scholar 

  • He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50:2272–2281

    Article  MATH  Google Scholar 

  • Heilmann P (2013) Evaluation, neuentwicklung und optimierung des eigenschaftsprofils von salzschmelzen für die verwendung als wӓrmetrӓgerfluide. PhD thesis. Bergische Universitӓt, Wuppertal.

  • Hemmat Esfe M, Yan W-M, Akbari M, Karimipour A, Hassani M (2015) Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int Commun Heat Mass Transf 68:248–251

    Article  Google Scholar 

  • Hentschke R (2016) On the specific heat capacity enhancement in nanofluids. Hentschke Nanoscale Res Lett 11(88):1–11

    Google Scholar 

  • Hong TT-K, Yang HH-S, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97:064311

    Article  Google Scholar 

  • Hong KS, Hong TK, Yang HS (2006) Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 88(3):031901

    Article  Google Scholar 

  • Honorine AM, Gilles R, Cong TN, Dominique D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 48:363–371

    Article  Google Scholar 

  • Hwang YJ, Ahn YC, Shin HS, Lee CG, Kim GT, Park HS et al (2006) Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys 6:1068–1071

    Article  Google Scholar 

  • Hwang Y, Lee JK, Lee CH, Jung Y, Cheong SI, Lee CG et al (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455:70–74

    Article  Google Scholar 

  • Jamshidi N, Farhadi M, Ganji DD, Sedighi K (2012) Experimental investigation on the viscosity of nanofluids. Int J Eng Trans B 25:201–209

    Article  Google Scholar 

  • Jeong J, Li Chengguo Y, Kwon J, Lee SH, Kim RY (2013) Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrigs 36:2233–3224

    Article  Google Scholar 

  • Jo B, Banerjee D (2015) Enhanced specific heat capacity of molten salt-based carbon nanotubes nanomaterials. J Heat Transf 137:091013

    Article  Google Scholar 

  • John T, Krishnakumar TS (2013) Experimental studies of thermal conductivity, viscosity and stability of ethylene glycol nanofluids. Int J Innov Res Sci Eng Technol 2:2347–6710

    Google Scholar 

  • Kazemi-Beydokhti A, Azizi-Namaghi H, Haj-Asgarkhani MA, Zeinali-Heris S (2015) Prediction of stability and thermal conductivity of SnO2 nanofluid via statistical method and an artificial neural network. Braz J Chem Eng 32(04):903–917

    Article  Google Scholar 

  • Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863

    Article  MATH  Google Scholar 

  • Kharisov BI, Kharissova OV, Ortiz-Mendez U (2016) CRC concise encyclopedia of nanotechnology. CRC Press, London

    Book  Google Scholar 

  • Kim SH, Choi SR, Kim D (2007) Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. J Heat Transf 129:298–307

    Article  Google Scholar 

  • Kitano T, Kataoka T, Shirota T (1981) An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheol Acta 20(2):207–209

    Article  Google Scholar 

  • Kole M, Dey TK (2011) Role of interfacial layer and clustering on the effective thermal conductivity of CuO–gear oil nanofluids. Exp Therm Fluid Sci 35(7):1490–1495

    Article  Google Scholar 

  • Kole M, Dey TK (2013) Enhanced thermophysical properties of copper nanoparticles dispersed in gear oil. Appl Therm Eng 56(1):45–53

    Article  Google Scholar 

  • Kulkarni DP, Vajjha RS, Das DK, Oliva D (2008) Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Appl Therm Eng 28:1774–1781

    Article  Google Scholar 

  • Lasfargues M (2014) Nitrate based high temperature nano-heat-transfer-fluids: formulation and characterisation. PhD Thesis. University of Leeds

  • Lasfargues M, Geng Q, Cao H, Ding Y (2015) Mechanical dispersion of nanoparticles and its effect on the specific heat capacity of impure binary nitrate salt mixtures. Nanomaterials 5:1136–1146

    Article  Google Scholar 

  • Lazarus G, Raja B, Mohan Lal D, Wongwises S (2010) Enhancement of heat transfer using nanofluids: an overview. Renew Sustain Energy Rev 14:629–641

    Article  Google Scholar 

  • Lee SS, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289

    Article  Google Scholar 

  • Lester E, Aksomaityte G, Li J, Gomez S, Gonzalez-Gonzalez J, Poliakoff M (2012) Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles. Prog Cryst Growth Charact Mater 58:3–13

    Article  Google Scholar 

  • Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99:084314

    Article  Google Scholar 

  • Li CH, Peterson GP (2007) The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J Appl Phys 101:044312

    Article  Google Scholar 

  • Li XF, Zhu DS, Wang XJ, Wang N, Gao JW, Li H (2008) Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochim Acta 469(1):98–103

    Article  Google Scholar 

  • Li H, Wang L, He Y, Hu Y, Zhu J, Jiang B (2014) Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Appl Therm Eng 88:363–368

    Article  Google Scholar 

  • Li X, Zou C, Zhou L, Qi A (2016) Experimental study on the thermo-physical properties of diathermic oil based SiC nanofluids for high temperature applications. Int J Heat Mass Transf 97:631–637

    Article  Google Scholar 

  • Liu M-S, Lin MC-C, Huang I-T, Wang C-C (2005) Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf 32:1202–1210

    Article  Google Scholar 

  • Mahbubul IM, Saidur R, Amalina MA (2012) Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf 55:874–885

    Article  Google Scholar 

  • Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles. Netsu Bussei 7:227–233

    Article  Google Scholar 

  • Mehralizadeh A, Shabanian SR, Bakeri G (2020) Experimental and modeling study of heat transfer enhancement of TiO2/SiO2 hybrid nanofluids on modified surfaces in pool boiling process. Eur Phys J plus 135:796

    Article  Google Scholar 

  • Mikrajuddin A, Khairurrijal K (2008) Derivation of Scherrer relation using an approach in basic physics course. J Nanosains Nanoteknologi 1(1):28–32

    Google Scholar 

  • Mintsa HA, Roy G, Nguyen CT, Doucet D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 48:363–371

    Article  Google Scholar 

  • Mirgolbabaei H (2022) Numerical investigation of irregular behavior of the helically coiled tube heat exchanger with pitch changes. Appl Therm Eng. https://doi.org/10.2298/TSCI210901009H

    Article  Google Scholar 

  • Mohammad M, Emad S, Amir RA, Sara TL, Hendrik SCM, Sh-Kherbeet A, Mehdi M (2017) Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field. Powder Technol 308:149–157

    Article  Google Scholar 

  • Mosivand S, Kazeminezhad I (2018) Magnetite nanoparticles functionalized with polypyrrole by pulsed sono-electrocrystallization and their applications for water treatment. J Mater Sci 29:12466–12476

    Google Scholar 

  • Mosivand S, Iraj K, Shirin PF (2019) Easy, fast, and efficient removal of heavy metals from laboratory and real wastewater using electrocrystalized iron nanostructures. Microchem J 146:534–543

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2 water based nanofluids. Int J Therm Sci 44:367–373

    Article  Google Scholar 

  • Namburu PK, Kulkarni DP, Dandekar A, Das DK (2007) Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett 2:67–71

    Article  Google Scholar 

  • Nawaz S, Hamza B, Hafiz MA, Muhammad US, Muhammad MJ, Zafar S, Arun KT, Syam-Sundar L, Changhe L (2022) Oriented square shaped pin-fin heat sink: Performance evaluation employing mixture based on ethylene glycol/water graphene oxide nanofluid. Appl Therm Eng 206:1180–1185

    Article  Google Scholar 

  • Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, Angue Mintsa H (2008) Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci 47:103–111

    Article  Google Scholar 

  • Nieh HM, Teng TP, Yu CC (2014) Enhanced heat dissipation of a radiator using oxide nano-coolant. Int J Therm Sci 77:252–261

    Article  Google Scholar 

  • Nkurikiyimfura I, Wang Y, Pan Z (2013) Heat transfer enhancement by magnetic nanofluids—a review. Renew Sustain Energy Rev 21:548–561

    Article  Google Scholar 

  • O’Hanley H, Buongiorno J, McKrell T, Hu LW (2012) Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Adv Mech Eng 4:181079

    Article  Google Scholar 

  • O’Hanley H, Buongiorno J, McKrell T, Hu L-W (2012) Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Adv Mech Eng. https://doi.org/10.1155/2012/181079

    Article  Google Scholar 

  • O'Hanley H, Buongiorno J, McKrell T, Hu L-W (2011) Measurement and model correlation of specific heat capacity of water-based nanofluids with silica, alumina and copper oxide nanoparticles. In: Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE2011, Colorado, USA

  • Pak BC, Cho YIY (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170

    Article  Google Scholar 

  • Parashar R, Meher W, Yadav RR, Avinash CP, Vyom P (2014) Surfactant free synthesis of metal oxide (Co and Ni) nanoparticles and applications to heat propagation in nanofluids. Mater Lett 132:440–443

    Article  Google Scholar 

  • Patel HE, Das SK, Sundararajan T, Sreekumaran Nair A, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83:2931–2933

    Article  Google Scholar 

  • Paul G, Pal T, Manna I (2010) Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique. J Colloid Interface Sci 349(1):434–437

    Article  Google Scholar 

  • Prasher RS, Bhattacharya P, Phelan PE (2006) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluids). Nanoletters 6:1529–1534

    Article  Google Scholar 

  • Pritam KD (2017) A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J Mol Liq 240:420–446

    Article  Google Scholar 

  • Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG (2006) Thermal conductivity of nanoparticle suspensions. J Appl Phys 99:084308

    Article  Google Scholar 

  • Riazi H, Thomas M, Grant BW, Rob A, Tehrani SSM, Taylor RA (2016) Specific heat control of nanofluids: a critical review. Int J Therm Sci 107:25–38

    Article  Google Scholar 

  • Sadegh A, Kourosh J, Amin J, Hossein A (2016) A complete experimental investigation on the rheological behavior of silver nanofluid. Heat Transf Res. https://doi.org/10.1002/htj.21212

    Article  Google Scholar 

  • Sajjad AZ, Rahmatollah K, Habibollah S, Habib A, Yuliya T, Mousa M, Morteza G, German SA (2018) Experimental investigation of the flow and heat transfer of magnetic nanofluid in a vertical tube in the presence of magnetic quadrupole field. Exp Therm Fluid Sci 91:155–165

    Article  Google Scholar 

  • Shahanshahi SZ, Mosivand S (2019) Electro-crystallized SnO2 nanoparticles for river-water heavy-metal ion pollutant removal process. Appl Phys A 125(1):652

    Article  Google Scholar 

  • Shahsavar A, Salimpour MR, Saghafian M, Shafii MB (2015) An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermochim Acta 617:102–110

    Article  Google Scholar 

  • Shin D, Banerjee D (2010) Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic (work in progress). Int J Struct Changes Solids 2:25–31

    Google Scholar 

  • Shin D, Banerjee D (2011a) Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Intl J Heat Mass Transf 54:1064–1070

    Article  Google Scholar 

  • Shin D, Banerjee D (2011b) Enhanced specific heat of silica nanofluid. J Heat Transf 133:024501

    Article  Google Scholar 

  • Shin D, Banerjee D (2014) Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic. Int J Heat Mass Transf 74:201–214

    Article  Google Scholar 

  • Socrates G (2001) Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, New Jersey

    Google Scholar 

  • Suganthi KS, Rajan KS (2017) Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew Sustain Energy Rev 76:226–255

    Article  Google Scholar 

  • Suganthi KS, Vinodhan VL, Rajan KS (2014) Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl Energy 135:548–559

    Article  Google Scholar 

  • Syam Sundar L, Venkata Ramana E, Singh MK, Sousa ACM (2014) Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: an experimental study. Int Commun Heat Mass Transf 56:86–95

    Article  Google Scholar 

  • Syam Sundar L, Sharma KV, Singh MK, Sousa ACM (2017) Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor: a review. Renew Sustain Energy Rev 68:185–198

    Article  Google Scholar 

  • Tawfik MM (2017) Experimental studies of nanofluid thermal conductivity enhancement and applications: a review applications. Renew Sustain Energy Rev 75:1239–1253

    Article  Google Scholar 

  • Teng Y, Yamamoto S, Kusano Y, Azuma M, Shimakawa Y (2010a) One-pot hydrothermal synthesis of uniformly cubic Co3O4nanocrystals. Mater Lett 64:239–242

    Article  Google Scholar 

  • Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG (2010b) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30(14):2213–2218

    Article  Google Scholar 

  • Teng T-P, Lin L, Yu C-C (2013) Preparation and characterization of carbon nanofluids by using a revised water-assisted synthesis method. J Nanomater. https://doi.org/10.1155/2013/582304

    Article  Google Scholar 

  • Türkes P, Pluntket Ch, Helbig R (1980) Thermal conductivity of SnO, single crystals. J Phys C 13:4941–4951

    Article  Google Scholar 

  • Vajjha RS, Das DK (2009) Specific heat measurement of three nanofluids and development of new correlations. J Heat Transf 131:071601

    Article  Google Scholar 

  • Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13:474–480

    Article  Google Scholar 

  • Wang Y, Fisher TS, Davidson JL, Jiang L (2002) Thermal conductivity of nanoparticle suspensions. In: Proceedings of the 8th AIAA/ASME Joint Thermophysics Heat Transfer Conference, St. Louis, MO, pp 1–6

  • Wen D, Ding Y (2004) Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophys Heat Transf 18:481–485

    Article  Google Scholar 

  • Wen D, Ding Y (2006) Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (nanofluids). IEEE Trans Nanotechnol 5:220–227

    Article  Google Scholar 

  • Xie H, Wang J, Xi T, Liu Y (2002a) Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys 23:571–580

    Article  Google Scholar 

  • Xie HQ, Wang JC, Xi TG, Liu Y (2002b) Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys 23(2):571–580

    Article  Google Scholar 

  • Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002c) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91:4568–4572

    Article  Google Scholar 

  • Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002d) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91(7):4568–4572

    Article  Google Scholar 

  • Xie H, Lee H, Youn W, Choi M (2003) Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys 94:4967–4971

    Article  Google Scholar 

  • Xing M, Yu J, Wang R (2016) Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids. Int J Therm Sci 104:404–411

    Article  Google Scholar 

  • Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64

    Article  Google Scholar 

  • Yiamsawas Th, Dalkilic AS, Mahian O, Wongwises S (2013) Measurement and correlation of the viscosity of water-based Al2O3 and TiO2 nanofluids in high temperatures and comparisons with literature reports. J Dispers Sci Technol 34:1697–1703

    Article  Google Scholar 

  • Yoo D-H, Hong KS, Yang H-S (2007) Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim Acta 455:66–69

    Article  Google Scholar 

  • Yu W, Xie H, Chen L, Li Y (2009) Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim Acta 491(1):92–96

    Article  Google Scholar 

  • Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31:593–599

    Article  Google Scholar 

  • Zhou SQ, Ni R (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92:093123

    Article  Google Scholar 

  • Zhou LP, Wang BX, Peng XF, Du XZ, Yang YP (2009) On the specific heat capacity of CuO nanofluid. Adv Mech Eng 2:172085

    Article  Google Scholar 

  • Zhu H, Zhang C, Liu S, Tang Y, Yin Y (2006) Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett 89(2):23123

    Article  Google Scholar 

  • Zhu D, Li X, Wang N, Wang X, Gao J, Li H (2009) Dispersion behaviour and thermal conductivity characteristics of Al2O3–H2O nanofluids. Curr Appl Phys 9(1):131–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Khavarpour.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman Salari, S., Khavarpour, M., Masoumi, M. et al. Preparation of cobalt oxide and tin dioxide nanofluids and investigation of their thermophysical properties. Microfluid Nanofluid 26, 79 (2022). https://doi.org/10.1007/s10404-022-02585-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-022-02585-5

Keywords

Navigation