Abstract
In this work, the droplet generation mechanism was comprehensively studied in a modified step T-junction microfluidic device over a wide range of continuous-to-dispersed viscosity ratio. Different surfactant concentrations were utilized to investigate the effect of interfacial tension on the emulsification. Depending on the flow conditions, the droplet generation in the modified step T-junction microchannel can be categorized into dripping, stable narrowing jetting and unstable narrowing jetting regime, where highly monodisperse micro-droplets were observed in the first two regime. The effects of interfacial tension and dispersed liquid viscosity on the micro-droplet generation, notably on the transition from stable to unstable narrowing jetting regimes, were investigated in details. Numerical simulations were conducted to deepen the understanding on the physics behind it. Overall, this work aims to provide a comprehensive guidance for the generation of monodisperse micro-droplets with highly viscous liquids, which is insightful for the fabrication of functional materials in diverse fields.
Similar content being viewed by others
References
Beier JP, Klumpp D, Rudisile M, Dersch R, Wendorff JH, Bleiziffer O, Arkudas A, Polykandriotis E, Horch RE, Kneser U (2009) Collagen matrices from sponge to nano: new perspectives for tissue engineering of skeletal muscle. BMC Biotechnol 9(1):34. https://doi.org/10.1186/1472-6750-9-34
Beldjilali-Labro M, Garcia Garcia A, Farhat F, Bedoui F, Grosset J-F, Dufresne M, Legallais C (2018) Biomaterials in tendon and skeletal muscle tissue engineering: current trends and challenges. Materials 11(7):1116. https://doi.org/10.3390/ma11071116
Carneiro J, Campos JBLM, Miranda JM (2019) High viscosity polymeric fluid droplet formation in a flow focusing microfluidic device – experimental and numerical study. Chem Eng Sci 195:442–454. https://doi.org/10.1016/j.ces.2018.09.042
Chan H-K, Kwok PCL (2011) Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 63(6):406–416. https://doi.org/10.1016/j.addr.2011.03.011
Chan HF, Zhang Y, Ho Y-P, Chiu Y-L, Jung Y, Leong KW (2013) Rapid Formation of Multicellular Spheroids in Double-Emulsion Droplets with Controllable Microenvironment. Sci Rep 3(1):3462. https://doi.org/10.1038/srep03462
Chen Z, Zhao R (2019) Engineered tissue development in biofabricated 3d geometrical confinement–a review. ACS Biomater Sci Eng 5(8):3688–3702. https://doi.org/10.1021/acsbiomaterials.8b01195
Chen Y, Wu L, Zhang C (2013) Emulsion droplet formation in coflowing liquid streams. Phys Rev E 87(1):013002. https://doi.org/10.1103/PhysRevE.87.013002
Cubaud T, Mason TG (2008) Capillary threads and viscous droplets in square microchannels. Phys Fluids 20(5):053302. https://doi.org/10.1063/1.2911716
Cui Y, Li Y, Wang K, Deng J, Luo G (2020) High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels. J Flow Chem 10(1):271–282. https://doi.org/10.1007/s41981-019-00051-y
de Barros DPC, Reed P, Alves M, Santos R, Oliva A (2021) Biocompatibility and antimicrobial activity of nanostructured lipid carriers for topical applications are affected by type of oils used in their composition. Pharmaceutics 13(11):1950. https://doi.org/10.3390/pharmaceutics13111950
Dragosavac MM, Holdich RG, Vladisavljević GT, Sovilj MN (2012) Stirred cell membrane emulsification for multiple emulsions containing unrefined pumpkin seed oil with uniform droplet size. J Membr Sci 392–393:122–129. https://doi.org/10.1016/j.memsci.2011.12.009
Du W, Fu T, Zhu C, Ma Y, Li HZ (2016) Breakup dynamics for high-viscosity droplet formation in a flow-focusing device: symmetrical and asymmetrical ruptures. AIChE J 62(1):325–337. https://doi.org/10.1002/aic.15043
Fu T, Wu Y, Ma Y, Li HZ (2012) Droplet formation and breakup dynamics in microfluidic flow-focusing devices: from dripping to jetting. Chem Eng Sci 84:207–217. https://doi.org/10.1016/j.ces.2012.08.039
Fu Y, Li C, Lu S, Zhou W, Tang F, Xie XS, Huang Y (2015) Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc Natl Acad Sci 112(38):11923–11928. https://doi.org/10.1073/pnas.1513988112
Geng Y, Ling S, Huang J, Xu J (2020) Multiphase microfluidics: fundamentals, fabrication, and functions. Small 16(6):1906357. https://doi.org/10.1002/smll.201906357
Gupta A, Kumar R (2010) Flow regime transition at high capillary numbers in a microfluidic t-junction: viscosity contrast and geometry effect. Phys Fluids 22(12):122001. https://doi.org/10.1063/1.3523483
Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7(9):1094. https://doi.org/10.1039/b706364b
Huang K-S, Lu K, Yeh C-S, Chung S-R, Lin C-H, Yang C-H, Dong Y-S (2009) Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules. J Controll Release 137(1):15–19. https://doi.org/10.1016/j.jconrel.2009.02.019
Joensson HN, Andersson Svahn H (2012) Droplet microfluidics-a tool for single-cell analysis. Angew Chem Int Ed 51(49):12176–12192. https://doi.org/10.1002/anie.201200460
Kaci M, Arab-Tehrany E, Desjardins I, Banon-Desobry S, Desobry S (2017) Emulsifier free emulsion: comparative study between a new high frequency ultrasound process and standard emulsification processes. J Food Eng 194:109–118. https://doi.org/10.1016/j.jfoodeng.2016.09.006
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971. https://doi.org/10.1039/c2cs15344k
Kentish S, Wooster TJ, Ashokkumar M, Balachandran S, Mawson R, Simons L (2008) The Use of ultrasonics for nanoemulsion preparation. Innov Food Sci Emerg Technol 9(2):170–175. https://doi.org/10.1016/j.ifset.2007.07.005
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201. https://doi.org/10.1016/j.cell.2015.04.044
Kumar K, Nightingale AM, Krishnadasan SH, Kamaly N, Wylenzinska-Arridge M, Zeissler K, Branford WR, Ware E, deMello AJ, deMello JC (2012) Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor. J Mater Chem 22(11):4704. https://doi.org/10.1039/c2jm30257h
Lee D-W, Jin M-H, Lee Y-J, Park J-H, Lee C-B, Park J-S (2016) Reducing-agent-free instant synthesis of carbon-supported Pd catalysts in a green leidenfrost droplet reactor and catalytic activity in formic acid dehydrogenation. Sci Rep 6(1):26474. https://doi.org/10.1038/srep26474
Li YK, Liu GT, Xu JH, Wang K, Luo GS (2015) A Microdevice for producing monodispersed droplets under a jetting flow. RSC Adv 5(35):27356–27364. https://doi.org/10.1039/C5RA02397A
Li YK, Wang K, Xu JH, Luo GS (2016) A capillary-assembled micro-device for monodispersed small bubble and droplet generation. Chem Eng J 293:182–188. https://doi.org/10.1016/j.cej.2016.02.074
Li Y, Wang K, Luo G (2017) Microdroplet generation with dilute surfactant concentration in a modified T-junction device. Ind Eng Chem Res 56(42):12131–12138. https://doi.org/10.1021/acs.iecr.7b02588
Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi C-H, Xu J, Zhang A, Lee H, Weitz DA (2018) Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 47(15):5646–5683. https://doi.org/10.1039/C7CS00263G
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214. https://doi.org/10.1016/j.cell.2015.05.002
Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8(5):870–891. https://doi.org/10.1038/nprot.2013.046
Nie Z, Seo M, Xu S, Lewis PC, Mok M, Kumacheva E, Whitesides GM, Garstecki P, Stone HA (2008) Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluid Nanofluidics 5(5):585–594. https://doi.org/10.1007/s10404-008-0271-y
Nightingale AM, Krishnadasan SH, Berhanu D, Niu X, Drury C, McIntyre R, Valsami-Jones E, deMello JC (2011) A stable droplet reactor for high temperature nanocrystal synthesis. Lab Chip 11(7):1221–1227. https://doi.org/10.1039/C0LC00507J
Nightingale AM, Phillips TW, Bannock JH, de Mello JC (2014) Controlled multistep synthesis in a three-phase droplet reactor. Nat Commun 5(1):3777. https://doi.org/10.1038/ncomms4777
Niu G, Ruditskiy A, Vara M, Xia Y (2015) Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chem Soc Rev 44(16):5806–5820. https://doi.org/10.1039/C5CS00049A
Pang Y, Zhou Q, Wang X, Lei Y, Ren Y, Li M, Wang J, Liu Z (2020) Droplets generation under different flow rates in t-junction microchannel with a neck. AIChE J. https://doi.org/10.1002/aic.16290
Prastowo A, Feuerborn A, Cook PR, Walsh EJ (2016) Biocompatibility of fluids for multiphase drops-in-drops microfluidics. Biomed Microdev 18(6):114. https://doi.org/10.1007/s10544-016-0137-0
Romano M, Pradere C, Sarrazin F, Toutain J, Batsale JC (2015) Enthalpy, kinetics and mixing characterization in droplet-flow millifluidic device by infrared thermography. Chem Eng J 273:325–332. https://doi.org/10.1016/j.cej.2015.03.071
Serra C, Berton N, Bouquey M, Prat L, Hadziioannou G (2007) A predictive approach of the influence of the operating parameters on the size of polymer particles synthesized in a simplified microfluidic system. Langmuir 23(14):7745–7750. https://doi.org/10.1021/la063289s
Shih R, Bardin D, Martz TD, Sheeran PS, Dayton PA, Lee AP (2013) Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications. Lab Chip 13(24):4816. https://doi.org/10.1039/c3lc51016f
Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids the science and application of droplets in microfluidic devices. Electronic supplementary information (ESI) available: five video clips showing: high-speed transport of a droplet of blood across 4 electrodes; sample injection into an on-chip reservoir using an external pipette; droplet formation from an on-chip reservoir using only electrowetting forces; droplets moving in-phase on a 3-phase transport bus; and a pipelined glucose assay, showing sample and reagent droplet formation, mixing, splitting and colorimetric reaction. Lab Chip 4(4):310. https://doi.org/10.1039/b403341h
Toth JR, Abuyazid NH, Lacks DJ, Renner JN, Sankaran RM (2020) A Plasma-water droplet reactor for process-intensified, continuous nitrogen fixation at atmospheric pressure. ACS Sustain Chem Eng 8(39):14845–14854. https://doi.org/10.1021/acssuschemeng.0c04432
Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541. https://doi.org/10.1126/science.1109164
Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA (2007) Dripping to jetting transitions in coflowing liquid streams. Phys Rev Lett 99(9):094502. https://doi.org/10.1103/PhysRevLett.99.094502
Utech S, Prodanovic R, Mao AS, Ostafe R, Mooney DJ, Weitz DA (2015) Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D Cell culture. Adv Healthc Mater 4(11):1628–1633. https://doi.org/10.1002/adhm.201500021
van der Graaf S, Nisisako T, Schroën CGPH, van der Sman RGM, Boom RM (2006) Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. Langmuir 22(9):4144–4152. https://doi.org/10.1021/la052682f
Velasco D, Tumarkin E, Kumacheva E (2012) Microfluidic encapsulation of cells in polymer microgels. Small 8(11):1633–1642. https://doi.org/10.1002/smll.201102464
Wan J (2012) Microfluidic-based synthesis of hydrogel particles for cell microencapsulation and cell-based drug delivery. Polymers 4(2):1084–1108. https://doi.org/10.3390/polym4021084
Wang J-T, Wang J, Han J-J (2011) Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics. Small 7(13):1728–1754. https://doi.org/10.1002/smll.201001913
Xie P, Wang K, Wang P, Xia Y, Luo G (2017) Synthesizing bromobutyl rubber by a microreactor system. AIChE J 63(3):1002–1009. https://doi.org/10.1002/aic.15431
Xu JH, Li SW, Tan J, Wang YJ, Luo GS (2006) Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE J 52(9):3005–3010. https://doi.org/10.1002/aic.10924
Xu JH, Li SW, Tan J, Luo GS (2008) Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid Nanofluidics 5(6):711–717. https://doi.org/10.1007/s10404-008-0306-4
Yao J, Lin F, Kim H, Park J (2019) The effect of oil viscosity on droplet generation rate and droplet size in a T-junction microfluidic droplet generator. Micromachines 10(12):808. https://doi.org/10.3390/mi10120808
Yurteri CU, Hartman RPA, Marijnissen JCM (2010) Producing pharmaceutical particles via electrospraying with an emphasis on nano and nano structured particles: a review. KONA Powder Part J 28:91–115. https://doi.org/10.14356/kona.2010010
Zhang J, Coulston RJ, Jones ST, Geng J, Scherman OA, Abell C (2012) One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science 335(6069):690–694. https://doi.org/10.1126/science.1215416
Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65(1):104–120. https://doi.org/10.1016/j.addr.2012.10.003
Zhang L, Niu G, Lu N, Wang J, Tong L, Wang L, Kim MJ, Xia Y (2014) Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors. Nano Lett 14(11):6626–6631. https://doi.org/10.1021/nl503284x
Zhang M, Yewe-Siang L, Shee W, Wu H (2018a) Direct emulsification of crude glycerol and bio-oil without addition of surfactant via ultrasound and mechanical agitation. Fuel 227:183–189. https://doi.org/10.1016/j.fuel.2018.04.099
Zhang Q, Zhu C, Du W, Liu C, Fu T, Ma Y, Li HZ (2018b) Formation dynamics of elastic droplets in a microfluidic T-junction. Chem Eng Res Des 139:188–196. https://doi.org/10.1016/j.cherd.2018.09.030
Zhang J, Ling SD, Chen A, Chen Z, Ma W, Xu J (2022) The liquid-liquid flow dynamics and droplet formation in a modified step T-Junction Microchannel. AIChE J. https://doi.org/10.1002/aic.17611
Acknowledgements
The authors gratefully acknowledge the supports of the National Natural Science Foundation of China (22025801,22108147), Shui Mu Xue Zhe of Tsinghua University (2020SM056), China Postdoctoral Science Foundation (2021M691761) for this work.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Da Ling, S., Zhang, J., Chen, Z. et al. Generation of monodisperse micro-droplets within the stable narrowing jetting regime: effects of viscosity and interfacial tension. Microfluid Nanofluid 26, 53 (2022). https://doi.org/10.1007/s10404-022-02558-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10404-022-02558-8