Skip to main content
Log in

Chemical reaction monitoring using tunable optofluidic Y-branch waveguides developed with counter-flow

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Chemical reaction monitoring based on integrated optofluidic systems is highly desirable because it is simpler, more flexible and efficient compared to traditional optical spectroscopy technique. This paper reports a novel chemical microreactor which is developed with a tunable optofluidic Y-branch waveguide, and this work demonstrates the monitoring of the sucrose hydrolysis reaction process by detecting the ratio of the two output intensities of light. The optofluidic Y-branch waveguide is formed by a liquid-core/liquid-cladding configuration with counter-flows. With the sucrose hydrolyzed into glucose and fructose in the waveguide core, the average molecular size of the product changes, which leads to the change of diffusion coefficient and the refractive index distribution profile. Therefore, the two output intensities of light change accordingly. Experimental studies have well demonstrated that the optofluidic Y-branch waveguide can monitor the sucrose hydrolysis in the concentration range from 0 to 2.1 mol/L with a limit of detection (LOD) of 250 μmol/L. This integrated optofluidic device can be used for various sensing applications in chemical reaction monitoring and quantification of molecular interactions with shortened test time and small sample volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benito-Lopez F, Verboom W, Kakuta M, Gardeniers JGE, Egberink RJM, Oosterbroek ER, Van Den Berg A, Reinhoudt DN (2005) Optical fiber-based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor. Chem Commun 22:2857–2859

    Article  Google Scholar 

  • Edward JT (1970) Molecular volumes and the Stokes-Einstein equation. J Chem Educ 47(4):261

    Article  Google Scholar 

  • Gitlin L, Hoera C, Meier RJ, Nagl S, Belder D (2013) Micro flow reactor chips with integrated luminescent chemosensors for spatially resolved on-line chemical reaction monitoring. Lab Chip 13(20):4134–4141

    Article  Google Scholar 

  • Gong X, Feng S, Qiao Z, Chen Y-C (2021) Imaging-based optofluidic biolaser array encapsulated with dynamic living organisms. Anal Chem 93(14):5823–5830

    Article  Google Scholar 

  • Huang X, Wang J, Li T, Wang J, Xu M, Yu W, El Abed A, Zhang X (2018) Review on optofluidic microreactors for artificial photosynthesis. Beilstein J Nanotechnol 9:30–41

    Article  Google Scholar 

  • Kamata M, Taguchi Y, Nagasaka Y (2018) Design of an optofluidic diffusion sensor by transient grating using dielectrophoresis. Opt Express 26(13):16970–16983

    Article  Google Scholar 

  • Li L, Zhu XQ, Liang L, Zuo YF, Xu YS, Yang Y, Yuan YJ, Huang QQ (2016) Switchable 3D optofluidic Y-branch waveguides tuned by Dean flows. Sci Rep 6(1):38338

    Article  Google Scholar 

  • Lotter C, Poehler E, Heiland JJ, Mauritz L, Belder D (2016) Enantioselective reaction monitoring utilizing two-dimensional heart-cut liquid chromatography on an integrated microfluidic chip. Lab Chip 16(24):4648–4652

    Article  Google Scholar 

  • Mao Z, Guo F, Xie Y, Zhao Y, Lapsley MI, Wang L, Mai JD, Costanzo F, Huang TJ (2014) Label-free measurements of reaction kinetics using a droplet-based optofluidic device. J Lab Autom 20(1):17–24

    Article  Google Scholar 

  • Oraie M, Latifi H (2019) Real-time refractive-index sensing by using liquid core/liquid cladding optofluidic waveguide. Opt Laser Technol 111:303–306

    Article  Google Scholar 

  • Shi Y, Liang L, Zhu XQ, Zhang XM, Yang Y (2015) Tunable self-imaging effect using hybrid optofluidic waveguides. Lab Chip 15(23):4398–4403

    Article  Google Scholar 

  • Shi Y, Nguyen KT, Chin LK, Li Z, Xiao L, Cai H, Yu R, Huang W, Feng S, Yap PH, Liu J, Zhang Y, Liu AQ (2021) Trapping and detection of single viruses in an optofluidic chip. ACS Sens 6(9):3445–3450

    Article  Google Scholar 

  • Song C, Nguyen N-T, Tan S-H, Asundi AK (2010) A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length. Microfluid Nanofluid 9(4):889–896

    Article  Google Scholar 

  • Song C, Nguyen N-T, Asundi AK, Low CL-N (2011) Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure. Opt Lett 36(10):1767–1769

    Article  Google Scholar 

  • Sun L, Huang T, Yuan Z, Yang M, Huang Y, Xiao P, Guan B (2019) Ultrasensitive optofluidic interferometer for online monitoring of photocatalytic reactions. J Lightwave Technol 37(21):5435–5441

    Article  Google Scholar 

  • Tang X, Liang S, Li R (2016) Design for controllable optofluidic beam splitter. Photonics Nanostruct Fundam Appl 18:23–30

    Article  Google Scholar 

  • Tu X, Luo Y, Huang T, Gan J, Song C (2019) Optofluidic refractive index sensor based on asymmetric diffraction. Opt Express 27(13):17809–17818

    Article  Google Scholar 

  • Wang N, Zhang X, Wang Y, Yu W, Chan HLW (2014) Microfluidic reactors for photocatalytic water purification. Lab Chip 14(6):1074–1082

    Article  Google Scholar 

  • Wang N, Tan F, Zhao Y, Tsoi CC, Fan X, Yu W, Zhang X (2016) Optofluidic UV–Vis spectrophotometer for online monitoring of photocatalytic reactions. Sci Rep 6(1):28928

    Article  Google Scholar 

  • Wang F, Zhu J, Hu X, Chen L, Zuo Y, Yang Y, Jiang F, Sun C, Zhao W, Han X (2021) Rapid nitrate determination with a portable lab-on-chip device based on double microstructured assisted reactors. Lab Chip 21(6):1109–1117

    Article  Google Scholar 

  • Weber E, Vellekoop MJ (2012) Optofluidic micro-sensors for the determination of liquid concentrations. Lab Chip 12(19):3754–3759

    Article  Google Scholar 

  • Wolfe Daniel B, Conroy Richard S, Garstecki P, Mayers Brian T, Fischbach Michael A, Paul Kateri E, Prentiss M, Whitesides George M (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc Natl Acad Sci 101(34):12434–12438

    Article  Google Scholar 

  • Yang Y, Chin LK, Tsai JM, Tsai DP, Zheludev NI, Liu AQ (2012) Transformation optofluidics for large-angle light bending and tuning. Lab Chip 12(19):3785–3790

    Article  Google Scholar 

  • Yang T, Paiè P, Nava G, Bragheri F, Vazquez RM, Minzioni P, Veglione M, Di Tano M, Mondello C, Osellame R, Cristiani I (2015) An integrated optofluidic device for single-cell sorting driven by mechanical properties. Lab Chip 15(5):1262–1266

    Article  Google Scholar 

  • Yue J, Schouten JC, Nijhuis TA (2012) Integration of microreactors with spectroscopic detection for online reaction monitoring and catalyst characterization. Ind Eng Chem Res 51(45):14583–14609

    Article  Google Scholar 

  • Zhang Z, Gernert U, Gerhardt RF, Höhn E-M, Belder D, Kneipp J (2018) Catalysis by metal nanoparticles in a plug-in optofluidic platform: redox reactions of p-nitrobenzenethiol and p-aminothiophenol. ACS Catal 8(3):2443–2449

    Article  Google Scholar 

  • Zhao HT, Zhang Y, Liu PY, Yap PH, Ser W, Liu AQ (2019) Chemical reaction monitoring via the light focusing in optofluidic waveguides. Sens Actuators B Chem 280:16–23

    Article  Google Scholar 

  • Zhu JM, Shi Y, Zhu XQ, Yang Y, Jiang FH, Sun CJ, Zhao WH, Han XT (2017) Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator. Lab Chip 17(23):4025–4030

    Article  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (61905224, 61804138), Wuhan Science and Technology Bureau (2020010601012164) and the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan (CUG170608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaolong Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, X., Wang, J., Yang, Y. et al. Chemical reaction monitoring using tunable optofluidic Y-branch waveguides developed with counter-flow. Microfluid Nanofluid 26, 31 (2022). https://doi.org/10.1007/s10404-022-02540-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-022-02540-4

Navigation