Elastocapillarity-based transport of liquids in flexible confinements and over soft substrates

Abstract

Surface tension force plays a vital role when the length scale of a system is small (i.e., in the micro/nano meter range). In the case of compliant structures and soft substrates, the competition between interfacial energy and elastic strain energy in the bulk gives rise to many interesting phenomena. Elastocapillarity refers to the study of the effects of deformation of flexible structures or soft substrates under the action of capillary forces. In contrast to rigid structures/substrates, the liquid surface tension force at the three-phase contact line could deform compliant structures or soft solids, thus resulting in interesting dynamics. The elastocapillary interaction between liquid and solid can give rise to stiction in microstructures, wrapping of droplet by flexible structures, buckling of fibres, and ridge formation at the contact line of a droplet on a soft substrate. Besides, recent research has shown that elastocapillarity can aid in the manipulation of liquid flow through flexible confinements and over soft substrates. Here, we report an extensive review of the literature on elastocapillarity mainly focusing on the elastocapillary-based liquid transport. The research in the field has been broadly classified into three different categories: liquid flow in compliant microchannels, liquid flow in flexible structures, and transport of droplets over soft elastic substrates. In each of the above cases, theoretical understanding of the mechanism responsible for liquid transport, and experimental studies leading to interesting results and observations are presented and discussed. Numerical modelling of elastocapillarity phenomena is also presented. Finally, we discuss the research challenges and future directions in the field of elastocapillarity-based transport of liquids.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

References

  1. Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret JC, Marquez M, Klibanov AM, Griffiths AD, Weitz DA (2010) Ultrahigh-Throughput Screening in Drop-Based Microfluidics for Directed Evolution. Proc Natl Acad Sci USA 107(9):4004

    Google Scholar 

  2. Ahmed A, Siddique I (2019) The effect of magnetic field on flow induced-deformation in absorbing porous tissues. Math Biosci Eng 16(2):603–618

    MathSciNet  Google Scholar 

  3. Andreotti B, Marchand A, Das S, Snoeijer JH (2011) Elastocapillary instability under partial wetting conditions: bending versus buckling. Phys Rev E Stat Nonlinear Soft Matter Phys 84:061601

    Google Scholar 

  4. Andreotti B, Bä Umchen O, Boulogne F, Daniels KE, Dufresne ER, Perrin H, Salez T, Snoeijer JH, Style RW (2016) Solid capillarity: when and how does surface tension deform soft solids? Soft Matter 12(12):2993–2996

    Google Scholar 

  5. Anoop R, Sen AK (2015) Capillary flow enhancement in rectangular polymer microchannels with a deformable wall. Phys Rev E 92(1):013024

    MathSciNet  Google Scholar 

  6. Antkowiak A, Audoly B, Josserand C, Neukirch S, Rivetti M (2011) Instant fabrication and selection of folded structures using drop impact. Proc Natl Acad Sci 108(26):10400–10404

    Google Scholar 

  7. Aristoff JM, Duprat C, Stone HA (2011) Elastocapillary imbibition. Int J Non Linear Mech 46(4):648–656

    MATH  Google Scholar 

  8. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  9. Bazilevs Y, Takizawa K, Tezduyar TE (2012) Challenges and directions in computational fluid-structure interaction. Math Model Methods Appl Sci 23(02):215–221

    MathSciNet  MATH  Google Scholar 

  10. Bazilevs Y, Takizawa K, Tayfun TE (2013) Computational fluid structure interaction. Wiley, New York

    Google Scholar 

  11. Bell JM, Cameron FK (1903) The: flow of liquids through capillary spaces. J Phys Chem 10:658–674

    Google Scholar 

  12. Betz O, Kölsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthropod Struct Dev 33(1):3–30

    Google Scholar 

  13. Bico J, Quéré D (2000) Liquid trains in a tube. Europhys Lett 51(5):546–550

    Google Scholar 

  14. Bico J, Quéré D (2002) Self-propelling slugs. J Fluid Mech 467:101–127

    MATH  Google Scholar 

  15. Bico J, Roman B, Moulin L, Boudaoud A (2004) Adhesion: elastocapillary coalescence in wet hair. Nature 432(7018):690

    Google Scholar 

  16. Bico J, Reyssat É, Roman B (2018) Elastocapillarity: when surface tension deforms elastic solids. Annu Rev Fluid Mech 50(1):629–659

    MathSciNet  MATH  Google Scholar 

  17. Bonn D, Eggers J, Indekeu J, Meunier J (2009) Wetting and spreading. Rev Mod Phys 81(2):739–805

    Google Scholar 

  18. Borno RT, Steinmeyer JD, Maharbiz MM (2006) Transpiration actuation: the design, fabrication and characterization of biomimetic microactuators driven by the surface tension of water. J Micromech Microeng 16:2375–2383

    Google Scholar 

  19. Bradley AT, Box F, Hewitt IJ, Vella D (2018) Wettability-independent droplet transport by bendotaxis. Phys Rev Lett 122:074503

    Google Scholar 

  20. Brochard F (1989) Motions of droplets on solid surfaces induced by chemical or thermal gradients. Langmuir 5(2):432–438

    Google Scholar 

  21. Bruus H (2008) Theoretical microfluidics. Oxford University Press, Oxford

    Google Scholar 

  22. Bueno J, Bona-Casas C, Bazilevs Y, Gomez H (2015) Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion. Comput Mech 55(6):1105–1118

    MathSciNet  MATH  Google Scholar 

  23. Bueno J, Bazilevs Y, Juanes R, Gomez H (2017a) Droplet motion driven by tensotaxis. Extreme Mech Lett 13:10–16

    Google Scholar 

  24. Bueno J, Casquero H, Bazilevs Y, Gomez H (2017b) Three-dimensional dynamic simulation of elastocapillarity. Meccanica 53:1221–1237

    MathSciNet  MATH  Google Scholar 

  25. Bueno J, Bazilevs Y, Juanes R (2018) Soft matter wettability control of droplet durotaxis. Soft Matter 14:1417–1426

    Google Scholar 

  26. Bush JWM, Peaudecerf F, Prakash M, Quéré D (2010) On a tweezer for droplets. Adv Colloid Interface Sci 161:10–14

    Google Scholar 

  27. Cambau T, Bico J, Reyssat E (2011) Capillary rise between flexible walls. EPL 96:24001

    Google Scholar 

  28. Cao Z, Dobrynin AV (2015) Polymeric droplets on soft surfaces: from Neumann’s Triangle to Young’s law. Macromolecules 48(2):443–451

    Google Scholar 

  29. Carré A, Shanahan MER (1995) Direct evidence for viscosity-independent spreading on a soft solid. Langmuir 11(1):24–26

    Google Scholar 

  30. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Google Scholar 

  31. Chakrapani N, Wei B, Carrillo A, Ajayan PM, Kane RS (2004) Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc Natl Acad Sci 101:4009–4012

    Google Scholar 

  32. Chatterjee S, Doshi P, Kumaraswamy G (2017) Capillary uptake in macroporous compressible sponges. Soft Matter 13:5731–5740

    Google Scholar 

  33. Choi YS, Vincent LG, Lee AR, Kretchmer KC, Chirasatitsin S, Dobke MK, Engler AJ (2012) The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. Biomaterials 33(29):6943–6951

    Google Scholar 

  34. Cohen AE, Mahadevan L (2003) Kinks, rings, and rackets in filamentous structures. Proc Natl Acad Sci USA 100(21):12141–12146

    Google Scholar 

  35. Comanns P, Buchberger G, Buchsbaum A, Baumgartner R, Kogler A, Bauer S, Baumgartner W (2015) Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic “Liquid Diode”. J R Soc Interface 12(109):20150415

    Google Scholar 

  36. Daniel S, Chaudhury MK, De Gennes PG (2005) Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir 21(9):4240–4248

    Google Scholar 

  37. Das S, Waghmare PR, Mitra SK (2012) Early regimes of capillary filling. Phys Rev E 86:067301

    Google Scholar 

  38. de Gennes PG, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena- drops, bubbles, pearls, waves. Springer, New York

    Google Scholar 

  39. Dedè L, Borden MJ, Hughes TJR (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19(3):427–465

    MathSciNet  MATH  Google Scholar 

  40. Dey R, Daga A, Dasgupta S, Chakraborty S (2015) Electrically modulated dynamic spreading of drops on soft surfaces. Appl Phys Lett 107(3):034101

    Google Scholar 

  41. Dhiman S, Jayaprakash KS, Iqbal R, Sen AK (2018) Self-transport and manipulation of aqueous droplets on oil-submerged diverging groove. Langmuir 34:12359–12368

    Google Scholar 

  42. Dickerson AK, Liu X, Zhu T, Hu DL (2015) Fog spontaneously folds mosquito wings. Phys Fluids 27(2):021901

    Google Scholar 

  43. Discher DE (2005) Tissue cells feel and respon to the stiffness of their substrate. Science 310(5751):1139–1143

    Google Scholar 

  44. Dixon HH, Dublin J, Joly J (1895) On the ascent of sap. Philos Trans R Soc B 186:563–576

    Google Scholar 

  45. Duprat C, Stone HA (2006) Elastocapillarity. In: Fluid–structure interactions in low-Reynolds-number flows. The Royal Society of Chemistry, Cambridge

  46. Duprat C, Aristoff JM, Stone HA (2010) Dynamics of elastocapillary rise. J Fluid Mech 679:641–654

    MATH  Google Scholar 

  47. Duprat C, Protière S, Beebe AY (2012) Wetting of flexible fibre arrays. Nature 482:510–513

    Google Scholar 

  48. Dupré A, Dupré P (1867) Théorie mécanique de la chaleur. Ann Chim Phys 4(11):194–220

    Google Scholar 

  49. Eisner T, Aneshansley DJ (2000) Defense by foot adhesion in a beetle (Hemisphaerota Cyanea). Proc Natl Acad Sci USA 97(12):6568–6573

    Google Scholar 

  50. Engel LA, Grassino A, Anthonisen NR (1975) Demonstration of airway closure in man. J Appl Physiol 38(6):1117–1125

    Google Scholar 

  51. Fang G, Li W, Wang X, Qiao G (2008) Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability. Langmuir 24(20):11651–11660

    Google Scholar 

  52. Fargette A, Neukirch S, Antkowiak A (2014) Elastocapillary snapping: capillarity induces snap-through instabilities in small elastic beams. Phys. Rev. Lett 112:137802

    Google Scholar 

  53. Fishlock SJ, Steele D, Puttaswamy SV, Lubarsky GV, Navarro C, Burns WP, McLaughlin J (2018) Fast and controllable elastocapillary flow channels using suspended membranes. IEEE Micro Electro Mech Syst 1165–1168

  54. Flaherty JE, Keller JB, Rubinow SI (1972) Post buckling behavior of elastic tubes and rings with opposite sides in contact. SIAM J Appl Math 23(4):446–455

    MATH  Google Scholar 

  55. George D, Anoop R, Sen AK (2015) Elastocapillary powered manipulation of liquid plug in microchannels. Appl Phys Lett 107:261601

    Google Scholar 

  56. Geraldi NR, Ouali FF, Morris RH, McHale G, Newton MI (2013) Capillary origami and superhydrophobic membrane surfaces. Appl Phys Lett 102(21):214104

    Google Scholar 

  57. Gielok M, Lopes M, Bonaccurso E, Gambaryan-Roisman T (2017) Droplet on an elastic substrate: finite element method coupled with lubrication approximation. Colloids Surf A Physicochem Eng Asp 521:13–21

    Google Scholar 

  58. Gomez H, Bueno J (2018) Interaction of multiphase fluids and solid structures. In: Tezduyar T (ed) Frontiers in computational fluid-structure interaction and flow simulation. Modeling and simulation in science, engineering and technology. Birkhäuser, Cham

    Google Scholar 

  59. Grotberg JB, Jensen OE (2004) Biofluid mechanics in flexible tubes. Annu Rev Fluid Mech 36:121–147

    MathSciNet  MATH  Google Scholar 

  60. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155

    Google Scholar 

  61. Ha J, Kim J, Jung Y, Yun G, Kim DN, Kim HY (2018) Poro-elasto-capillary wicking of cellulose sponges. Sci Adv 4(3):1–7

    Google Scholar 

  62. Handique K, Burke DT, Mastrangelo CH, Burns MA (2000) Nanoliter liquid metering in microchannels using hydrophobic patterns. Anal Chem 72(17):4100–4109

    Google Scholar 

  63. Hazel AL, Heil M (2010) Surface-tension-induced buckling of liquid-lined elastic tubes: a model pulmonary airway closure. Proc R Soc A Math Phys Eng Sci 461(2058):1847–1868

    MathSciNet  MATH  Google Scholar 

  64. Heil M, Hazel AL, Smith JA (2008) The mechanics of airway closure. Respir Physiol Neurobiol 163:214–221

    Google Scholar 

  65. Hoberg TB, Verneuil E, Hosoi AE, Hoberg TB, Verneuil E, Hosoi AE (2014) Elastocapillary flows in flexible tubes. Phys Fluids 26:122103

    Google Scholar 

  66. Holley B, Faghri A (2006) Permeability and effective pore radius measurements for heat pipe and fuel cell applications. Appl Therm Eng 26(4):448–462

    Google Scholar 

  67. Holmes DP, Brun P-T, Pandey A, Protière S (2016) Rising beyond elastocapillarity. Soft Matter 12(22):4886–4890

    Google Scholar 

  68. Hsieh YL (1995) Liquid transport in fabric structures. Text Res J 65(5):299–307

    Google Scholar 

  69. https://blog.espci.fr/jbico/enseignement/

  70. Hu DL, Chan B, Bush JWM (2003) The hydrodynamics of water strider locomotion. Nature 424(6949):663–666

    Google Scholar 

  71. Hughes JMB, Rosenzweig DY, Kivitz PB (1970) Site of airway closure in excised dog lungs: histologic demonstration. J Appl Physiol 29(3):340–344

    Google Scholar 

  72. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    MathSciNet  MATH  Google Scholar 

  73. Ichimura K, Oh SK, Nakagawa M (2000) Light-driven motion of liquids on a photoresponsive surface. Science 288(5471):1624–1626

    Google Scholar 

  74. Jagota A (2016) Role reversal: liquid “cheerios” on a solid sense each other. Proc Natl Acad Sci 113(27):7294–7295

    Google Scholar 

  75. Jerison ER, Xu Y, Wilen LA, Dufresne ER (2011) Deformation of an elastic substrate by a three-phase contact line. Phys. Rev. Lett 106:186103

    Google Scholar 

  76. Jing H, Sinha S, Das S (2017) Elasto-electro-capillarity: drop equilibrium on a charged, elastic solid. Soft Matter 13(3):554–566

    Google Scholar 

  77. Johnson M, Kamm RD, Hol LW, Shapiro AN, Pedleyz DTJ (1991) The nonlinear growth of surface-tension-driven instabilities of a thin annular film. J Fluid Mech 233:141–156

    Google Scholar 

  78. Joly L (2011) Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes. J Chem Phys 135(21):214705

    Google Scholar 

  79. Jovanović J, Rebrov EV, Nijhuis TA, Kreutzer MT, Hessel V, Schouten JC (2012) Liquid–liquid flow in a capillary microreactor: hydrodynamic flow patterns and extraction performance. Ind Eng Chem Res 51(2):1015–1026

    Google Scholar 

  80. Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, De Rooij N, Delamarche E (2002) Autonomous microfluidic capillary system. Anal Chem 74(24):6139–6144

    Google Scholar 

  81. Jung S, Reis PM, James J, Clanet C, Bush JWM (2009) Capillary origami in nature. Phys Fluids 21(9):1–2

    MATH  Google Scholar 

  82. Jupa R (2017) Ph.D. dissertation. Masaryk University

  83. Jurin J (1717) An account of some experiments shown before the royal society; with an enquiry into the cause of the ascent and suspension of water in capillary tubes. Philos Trans R Soc Lond 30(351–363):739–747

    Google Scholar 

  84. Kajiya T, Daerr A, Narita T, Royon L, Lequeux F, Limat L (2013) Advancing liquid contact line on visco-elastic gel substrates: stick-slip vs. continuous motions. Soft Matter 9:454–461

    Google Scholar 

  85. Kajiya T, Brunet P, Royon L, Daerr A, Receveur M, Limat L (2014) A liquid contact line receding on a soft gel surface: dip-coating geometry investigation. Soft Matter 10:8888–8895

    Google Scholar 

  86. Karpitschka S, Das S, Van Gorcum M, Perrin H, Andreotti B, Snoeijer JH (2015) droplets move over viscoelastic substrates by surfing a ridge. Nat Commun 6:1–7

    Google Scholar 

  87. Karpitschka S, Pandey A, Lubbers LA, Weijs JH, Botto L, Das S (2016) Liquid drops attract or repel by the inverted Cheerios effect. Proc Natl Acad Sci 113(27):7403–7407

    Google Scholar 

  88. Keller JB (1998) Surface tension force on a partly submerged body. Phys Fluids Am J 10(19):122102–172108

    MathSciNet  Google Scholar 

  89. Kim W, Bush JWM (2012) Natural drinking strategies. J Fluid Mech 705:7–25

    MATH  Google Scholar 

  90. Kim H-Y, Mahadevan L (2006) Capillary rise between elastic sheets. J Fluid Mech 548(1):141–150

    Google Scholar 

  91. Kim W, Peaudecerf F, Baldwin MW, Bush JWM (2012a) The Hummingbird’s tongue: a self-assembling capillary syphon. Proc R Soc B Biol Sci 279(1749):4990–4996

    Google Scholar 

  92. Kim G, Cho S, Han J, Lee Y, Roh C, Hong K, Park S (2012b) Effect of drying liquid on stiction of high aspect ratio structures. Solid State Phenom 187:75–78

    Google Scholar 

  93. Kiss MM, Ortoleva-donnelly L, Beer NR, Warner J, Bailey G, Colston BW, Rothberg JM, Link DR, Leamon JH, Bailey CG (2008) High-throughput quantitative polymerase chain reaction in picoliter droplets high-throughput quantitative polymerase chain reaction in picoliter droplets. East 80(23):8975–8981

    Google Scholar 

  94. Köster S, Angilè FE, Duan H, Agresti JJ, Wintner A, Schmitz C, Rowat AC, Merten CA, Pisignano D, Griffiths AD et al (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8(7):1110–1115

    Google Scholar 

  95. Laplace PS (1799) Traité de Mécanique Céleste. Duprat, Paris

  96. Lester GR (1961) Contact angles of liquids at deformable solid surfaces. J Colloid Sci 16(4):315–326

    Google Scholar 

  97. Liu JL, Feng XQ (2012) On elastocapillarity: a review. Acta Mech Sin 28:928

    MATH  Google Scholar 

  98. Liu T, Nadermann N, He Z, Strogatz S, Hui C-Y, Jagota A (2017a) Spontaneous droplet motion on a periodically compliant substrate. Langmuir 33:4942–4947

    Google Scholar 

  99. Liu T, Xu X, Nadermann N, He Z, Jagota A, Hui C-Y (2017b) Interaction of droplets separated by an elastic film. Langmuir 33(1):75–81

    Google Scholar 

  100. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Google Scholar 

  101. Lubbers LA, Weijs JH, Botto L, Das S, Andreotti B (2014) Drops on soft solids : free energy and double transition of contact angles. J Fluid Mech 747:1–12

    MathSciNet  MATH  Google Scholar 

  102. Lucas VR (1918) Uber das zeitgesetz des kapillaren aufstiegs von flus- sigkeiten. Kolloid Z 23:15–22

    Google Scholar 

  103. Majhy B, Iqbal R, Gaikwad R, Sen AK (2018) Dynamics of capillary flow in an open superoleophilic microchannel and its application to sensing of oil. Microfluid Nanofluidics 22(10):116

    Google Scholar 

  104. Mandal P, Dev R, Chakraborty S (2012) Electrokinetics with “Paper-and-Pencil” devices. Lab Chip 12:4026–4028

    Google Scholar 

  105. Marangoni C (1871) Über die Ausbreitung der Tropfen einer Flüssigkeit auf Oberfläche einer anderen. Ann Phys Chem 143:337–354

    Google Scholar 

  106. Marchand A, Das S, Snoeijer JH, Andreotti B (2012) Contact angles on a soft solid: from Young’s law to Neumann’s law. Phys Rev Lett 109:236101

    Google Scholar 

  107. Maria MS, Chandra TS, Sen AK (2017) Capillary flow-driven blood plasma separation and on-chip analyte detection in microfluidic devices. Microfluid Nanofluid 21:1–21

    Google Scholar 

  108. Martel R, Shea HR, Avouris P (1999) Rings of single-walled carbon nanotubes. Nature 398(6725):299

    Google Scholar 

  109. Mastrangelo CH, Hsu CH (1993a) Mechanical stability and adhesion of microstructures under capillary forces-part I: basic theory. J. Microelectromechanical Syst 2(1):33–43

    Google Scholar 

  110. Mastrangelo CH, Hsu CH (1993b) Mechanical stability and adhesion of microstructures under capillary forces-part II: experiments. J Microelectromechanical Syst 2(1):44–55

    Google Scholar 

  111. Mazouchi A, Homsy GM, Mazouchi A (2000) Thermocapillary migration of long bubbles in cylindrical capillary tubes. Phys Fluids 2015:542

    MATH  Google Scholar 

  112. Neukirch S, Roman B, de Gaudemaris B, Bico J (2007) Piercing a liquid surface with an elastic rod: buckling under capillary forces. J Mech Phys Solids 55:1212–1235

    MathSciNet  Google Scholar 

  113. Neukirch S, Antkowiak A, Marigo JJ (2013) The bending of an elastic beam by a liquid drop: a variational approach. Proc R Soc A 469:20130066

    MathSciNet  MATH  Google Scholar 

  114. Neumann F (1894) Vorlesungen ber die theorie der capillaritt. Ger. B.G. Teubner, Leipzig

    Google Scholar 

  115. Noblin X, Rojas NO, Westbrook J, Llorens C, Argentina M, Dumais J (2012) The fern sporangium: a unique catapult. Science 335:1322

    Google Scholar 

  116. Olanrewaju A, Beaugrand M, Yafia M, Juncker D (2018) Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18(16):2323–2347

    Google Scholar 

  117. Pandey A, Nawijn CL, Snoeijer JH, Engstrom TA, Schwarz JM, Biggins JS, Wei Z, Mahadevan L (2015) Elastic Cheerios effect : self-assembly of cylinders on a soft solid. EPL 112:54001

    Google Scholar 

  118. Park SJ, Weon BM, Lee JS, Lee J, Kim J, Je JH (2014) Visualization of asymmetric wetting ridges on soft solids with X-ray microscopy. Nat Commun 5:1–7

    Google Scholar 

  119. Paulsen JD (2019) Wrapping liquids, solids, and gases in thin sheets. Annu Rev Condens Matter Phys 10(1):431–450

    Google Scholar 

  120. Pericet-Camara R, Auernhammer GK, Koynov K, Lorenzoni S, Raiteri R, Bonaccurso E (2009) Solid-supported thin elastomer films deformed by microdrops. Soft Matter 5(19):3611–3617

    Google Scholar 

  121. Pericet-Cámara R, Best A, Butt HJ, Bonaccurso E (2008) Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: an experimental investigation. Langmuir 24:10565–10568

    Google Scholar 

  122. Peskin CS (2002) The immersed boundary method. Acta Numer 2002(2010):479–518

    MathSciNet  MATH  Google Scholar 

  123. Piñeirua M, Bico J, Roman B (2010) Capillary origami controlled by an electric field. Soft Matter 6:4491–4496

    Google Scholar 

  124. Pokroy B, Kang SH, Mahadevan L, Aizenberg J (2009a) Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies. Science 323(5911):237–240

    Google Scholar 

  125. Pokroy B, Epstein AK, Persson-Gulda MCM, Aizenberg J (2009b) Fabrication of bioinspired actuated nanostructures with arbitrary geometry and stiffness. Adv Mater 21(4):463–469

    Google Scholar 

  126. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77(11):1725–1726

    Google Scholar 

  127. Ponomarenko A, Quéré D, Clanet C (2011) A universal law for capillary rise in corners. J Fluid Mech 666:146–154

    MATH  Google Scholar 

  128. Prakash M, Quéré D, Bush JWM (2008) Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science 320(May):931–934

    Google Scholar 

  129. Protiere S, Duprat C, Stone HA (2013) Wetting on two parallel fibers: drop to column transitions. Soft Matter 9(1):271–276

    Google Scholar 

  130. Provatas N, Elder K (2010) Phase-field methods in materials science and engineering. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

  131. Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud CN (2007a) Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys Rev Lett 98(15):156103

    MATH  Google Scholar 

  132. Py C, Bastien R, Bico J, Roman B, Boudaoud A (2007b) 3D aggregation of wet fibers. EPL 77(77):44005

    Google Scholar 

  133. Quere D (1997) Inertial capillarity. Europhys Lett Eur 39(5):533–538

    Google Scholar 

  134. Reddy SP, Samy RA, Sen AK (2016) Interaction of elastocapillary flows in parallel microchannels across a thin membrane. Appl Phys Lett 109(14):141601

    Google Scholar 

  135. Reza Masoodi KMP (2017) Wicking in porous materials: traditional and modern modeling approaches. CRC Press, Boca Raton

    Google Scholar 

  136. Rico-Guevara A, Rubega MA (2011) The Hummingbird tongue is a fluid trap, not a capillary tube. Proc Natl Acad Sci USA 108(23):9356–9360

    Google Scholar 

  137. Roman B, Bico J (2010) Elasto-capillarity: deforming an elastic structure with a liquid droplet. J Phys Condens Matter 22(22):493101–493116

    Google Scholar 

  138. Rusanov AI (1978) On the thermodynamics of deformable solid surfaces. J Colloid Interface Sci 63:330–345

    Google Scholar 

  139. Samani A, Plewes D, Samani A, Plewes D, Samani A, Zubovits J (2003) Physics in medicine & biology measuring the elastic modulus of ex vivo small tissue samples samples. Phys Med Biol 48:2183

    Google Scholar 

  140. Samy RA, Sen AK (2019) Elastocapillary flow driven lab-on-a-membrane device based on differential wetting and sedimentation effect for blood plasma separation. J Micromech Microeng 29(6):065001

    Google Scholar 

  141. Samy RA, George D, Sen AK (2017) Bio-inspired liquid transport via elastocapillary interaction of a thin membrane with a liquid meniscus. Soft Matter 13:6858–6869

    Google Scholar 

  142. Schulman RD, Porat A, Charlesworth K, Fortais A, Salez T, Raphaë E, Dalnoki-Veress K (2017) Elastocapillary bending of microfibers around liquid droplets. Soft Matter 13(4):697–888

    Google Scholar 

  143. Shanahan MER (1985) Contact angle equilibrium on thin elastic solids. J Adhes 18(4):247–267

    Google Scholar 

  144. Shanahan MER (1987) The journal of adhesion equilibrium of liquid drops on thin plates; plate rigidity and stability considerations. J Adhes 204:261–274

    Google Scholar 

  145. Shanahan MER (1988) The spreading dynamics of a liquid drop on a viscoelastic solid. J Phys D Appl Phys 21(2):981–985

    Google Scholar 

  146. Shanahan MER, Garré A (1995) Viscoelastic dissipation in wetting and adhesion phenomena. Langmuir 11(4):1396–1402

    Google Scholar 

  147. Siddique J, Anderson DM (2012) Capillary rise of a non-newtonian liquid into a deformable porous material. J Porous Media 14(12):1087–1102

    Google Scholar 

  148. Siddique JI, Anderson DM, Bondarev A (2009) Capillary rise of a liquid into a deformable porous material. Phys Fluids 21(1):013106

    MATH  Google Scholar 

  149. Siddique J, Ahmed A, Aziz A, Khalique C (2017) A review of mixture theory for deformable porous media and applications. Appl Sci 7(9):917

    Google Scholar 

  150. Sidorenko A, Krupenkin T, Taylor A, Fratzl P, Aizenberg J (2007) Reversible switching of hydrogel actuated nanostructures into complex micropatterns. Science 315(January):487–491

    Google Scholar 

  151. Sokuler M, Auernhammer GK, Roth M, Liu C, Bonacurrso E, Butt HJ (2010) The softer the better: fast condensation on soft surfaces. Langmuir 26(3):1544–1547

    Google Scholar 

  152. Songok J, Toivakka M (2016) Controlling capillary-driven surface flow on a paper-based microfluidic channel. Microfluid Nanofluidics 20(4):1–9

    Google Scholar 

  153. Stange M, Dreyer ME, Rath HJ (2003) Capillary driven flow in circular cylindrical tubes. Phys Fluids 15(9):2587–2601

    MATH  Google Scholar 

  154. Style RW, Dufresne ER (2012) Static wetting on deformable substrates, from liquids to soft solids. Soft Matter 6:7177–7184

    Google Scholar 

  155. Style RW, Che Y, Park SJ, Weon BM, Je JH, Hyland C, German GK, Power MP, Wilen LA, Wettlaufer JS et al (2013a) Patterning droplets with durotaxis. Proc Natl Acad Sci 110:12541–12544

    Google Scholar 

  156. Style RW, Boltyanskiy R, Che Y, Wettlaufer JS, Wilen LA, Dufresne ER (2013b) Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys Rev Lett 110(6):1–5

    Google Scholar 

  157. Style RW, Jagota A, Hui C, Dufresne ER (2017) Elastocapillarity: surface tension and the mechanics of soft solids. Ann Rev Condens Matter Phys 8:99–118

    Google Scholar 

  158. Suk JW, Cho J-H (2007) Capillary flow control using hydrophobic patterns. J. Micromechanics Microengineering 17(4):N11–N15

    Google Scholar 

  159. Syms RRA, Yeatman EM, Bright VM, Whitesides GM (2003) Surface tension-powered self-assembly of microstructures—the state-of-the-art. J Microelectromechanical Syst 12:387–417

    Google Scholar 

  160. Tanaka T, Morigami M, Oizumi H, Ogawa T, Uchino SI (1994) Prevention of resist pattern collapse by flood exposure during rinse process. Jpn J Appl Phys 33:L1803

    Google Scholar 

  161. Tas NR, Mela P, Kramer T, Berenschot JW, Van Den Berg A (2003) Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett 3:1537–1540

    Google Scholar 

  162. Tas NR, Escalante M, Van Honschoten JW, Jansen HV, Elwenspoek M (2010) Capillary negative pressure measured by nanochannel collapse. Langmuir 26:1473–1476

    Google Scholar 

  163. Theodorakis PE, Egorov SA, Milchev A (2017) Stiffness-guided motion of a Droplet on a solid substrate. J Chem Phys 146(24):244705

    Google Scholar 

  164. Timoshenko S, Woinowsky-Krieger S (1959) Thoery of plates and shells, 2nd edn. McGraw-Hill Book Company Inc., New York

    Google Scholar 

  165. Trichet L, Le Digabel J, Hawkins RJ, Vedula SRK, Gupta M, Ribrault C, Hersen P, Voituriez R, Ladoux B (2012) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci 109(18):6933–6938

    Google Scholar 

  166. van Brummelen EH, Shokrpour-Roudbari M, Van Zwieten GJ (2016) Elasto-capillarity simulations based on the Navier–Stokes–Cahn–Hilliard equations. Springer, Cham

    Google Scholar 

  167. van Honschoten JW, Escalante M, Tas NR, Jansen HV, Elwenspoek M (2007) Elastocapillary filling of deformable nanochannels. J Appl Phys 101(9):094310

    Google Scholar 

  168. van Honschoten JW, Escalante M, Tas NR, Elwenspoek M (2009) Formation of liquid menisci in flexible nanochannels. J Colloid Interface Sci 329:133

    Google Scholar 

  169. Vella D, Mahadevan L (2005) The “Cheerios Effect”. Am J Phys 73:817–825

    Google Scholar 

  170. Waghmare PR, Mitra SK (2012) A comprehensive theoretical model of capillary transport in rectangular microchannels. Microfluid Nanofluidics 12(1–4):53–63

    Google Scholar 

  171. Walker GM, Beebe DJ (2002) A passive pumping method for microfluidic devices. Lab Chip 2(3):131–134

    Google Scholar 

  172. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

    Google Scholar 

  173. Wei Z, Mahadevan L (2014) Continuum dynamics of elastocapillary coalescence and arrest. EPL 106:14002

    Google Scholar 

  174. Weigl B, Domingo G, LaBarre P, Gerlach J (2008) Towards non- and minimally instrumented, microfluidics-based diagnostic devices. Lab Chip 8(12):1999–2014

    Google Scholar 

  175. Weijs JH, Andreotti B, Snoeijer JH (2013) Elasto-capillarity at the nanoscale: on the coupling between elasticity and surface energy in soft solids. Soft Matter 9:8494–8503

    Google Scholar 

  176. Weislogel MM (1997) Steady spontaneous capillary flow in partially coated tubes. AIChE J 43(3):645–654

    Google Scholar 

  177. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Google Scholar 

  178. Wheeler AA, Anderson DM, Fadden GB (1998) Diffusive-interphase methods in fluid mechanics. Annu Rev Fluid Mech 30:139–165

    Google Scholar 

  179. White JP, Heil M (2005) Three-dimensional instabilities of liquid-lined elastic tubes: a thin-film fluid-structure interaction model. Phys Fluids 17(3):031506

    MathSciNet  MATH  Google Scholar 

  180. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Google Scholar 

  181. Wong WSY, Li M, Nisbet DR, Craig VSJ, Wang Z, Tricoli A (2016) Mimosa origami: a nanostructure-enabled directional self-organization regime of materials. Sci Adv 2(June):e1600417

    Google Scholar 

  182. Wu D, Chen QD, Xu BB, Jiao J, Xu Y, Xia H, Sun HB (2009) Self-organization of polymer nanoneedles into large-area ordered flowerlike arrays. Appl Phys Lett 95(9):091902

    Google Scholar 

  183. Wu X, Van Zwieten GJ, Van der Zee KG (2014) Stabilized second-order convex splitting schemes ForCahn–Hilliard models with application to diffuse-interfacetumor-growth models. Int J Numer Method Biomed Eng 30(1):180–203

    Google Scholar 

  184. Wyss HM (2016) Rheology of soft materials. In: Nieves AF, Puertas AM (eds) Fluids, colloids and soft materials: an introduction to soft matter physics. Wiley, Hoboken, New Jersey

    Google Scholar 

  185. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 37(5):551–575

    Google Scholar 

  186. Xu J, Vilanova G, Gomez H (2016) A mathematical model coupling tumor growth and angiogenesis. PLoS One 11(2):1–20

    Google Scholar 

  187. Ye Z, Li S, Wang C, Shen R, Wen W (2016) Capillary flow control in nanochannels via hybrid surface. RSC Adv 6(4):2774–2777

    Google Scholar 

  188. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Google Scholar 

  189. Zhao M, Dervaux J, Narita T, Lequeux F, Limat L, Roché M (2018) Geometrical control of dissipation during the spreading of liquids on soft solids. Proc Natl Acad Sci 115(8):1748–1753

    Google Scholar 

  190. Zhu Y, Petkovic-Duran K (2009) Capillary flow in microchannels. Microfluid Nanofluid 8:275–282

    Google Scholar 

  191. Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125

    Google Scholar 

  192. Zimmermann M, Hunziker P, Delamarche E (2008) Valves for autonomous capillary systems. Microfluid Nanofluidics 5:395–402

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Sen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samy, R.A., Suthanthiraraj, P.P.A., George, D. et al. Elastocapillarity-based transport of liquids in flexible confinements and over soft substrates. Microfluid Nanofluid 23, 100 (2019). https://doi.org/10.1007/s10404-019-2266-2

Download citation