Advertisement

Elastocapillarity-based transport of liquids in flexible confinements and over soft substrates

  • R. A. Samy
  • Pearlson P. A. Suthanthiraraj
  • D. George
  • R. Iqbal
  • A. K. SenEmail author
Review
  • 301 Downloads

Abstract

Surface tension force plays a vital role when the length scale of a system is small (i.e., in the micro/nano meter range). In the case of compliant structures and soft substrates, the competition between interfacial energy and elastic strain energy in the bulk gives rise to many interesting phenomena. Elastocapillarity refers to the study of the effects of deformation of flexible structures or soft substrates under the action of capillary forces. In contrast to rigid structures/substrates, the liquid surface tension force at the three-phase contact line could deform compliant structures or soft solids, thus resulting in interesting dynamics. The elastocapillary interaction between liquid and solid can give rise to stiction in microstructures, wrapping of droplet by flexible structures, buckling of fibres, and ridge formation at the contact line of a droplet on a soft substrate. Besides, recent research has shown that elastocapillarity can aid in the manipulation of liquid flow through flexible confinements and over soft substrates. Here, we report an extensive review of the literature on elastocapillarity mainly focusing on the elastocapillary-based liquid transport. The research in the field has been broadly classified into three different categories: liquid flow in compliant microchannels, liquid flow in flexible structures, and transport of droplets over soft elastic substrates. In each of the above cases, theoretical understanding of the mechanism responsible for liquid transport, and experimental studies leading to interesting results and observations are presented and discussed. Numerical modelling of elastocapillarity phenomena is also presented. Finally, we discuss the research challenges and future directions in the field of elastocapillarity-based transport of liquids.

Notes

References

  1. Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret JC, Marquez M, Klibanov AM, Griffiths AD, Weitz DA (2010) Ultrahigh-Throughput Screening in Drop-Based Microfluidics for Directed Evolution. Proc Natl Acad Sci USA 107(9):4004Google Scholar
  2. Ahmed A, Siddique I (2019) The effect of magnetic field on flow induced-deformation in absorbing porous tissues. Math Biosci Eng 16(2):603–618MathSciNetGoogle Scholar
  3. Andreotti B, Marchand A, Das S, Snoeijer JH (2011) Elastocapillary instability under partial wetting conditions: bending versus buckling. Phys Rev E Stat Nonlinear Soft Matter Phys 84:061601Google Scholar
  4. Andreotti B, Bä Umchen O, Boulogne F, Daniels KE, Dufresne ER, Perrin H, Salez T, Snoeijer JH, Style RW (2016) Solid capillarity: when and how does surface tension deform soft solids? Soft Matter 12(12):2993–2996Google Scholar
  5. Anoop R, Sen AK (2015) Capillary flow enhancement in rectangular polymer microchannels with a deformable wall. Phys Rev E 92(1):013024MathSciNetGoogle Scholar
  6. Antkowiak A, Audoly B, Josserand C, Neukirch S, Rivetti M (2011) Instant fabrication and selection of folded structures using drop impact. Proc Natl Acad Sci 108(26):10400–10404Google Scholar
  7. Aristoff JM, Duprat C, Stone HA (2011) Elastocapillary imbibition. Int J Non Linear Mech 46(4):648–656zbMATHGoogle Scholar
  8. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeGoogle Scholar
  9. Bazilevs Y, Takizawa K, Tezduyar TE (2012) Challenges and directions in computational fluid-structure interaction. Math Model Methods Appl Sci 23(02):215–221MathSciNetzbMATHGoogle Scholar
  10. Bazilevs Y, Takizawa K, Tayfun TE (2013) Computational fluid structure interaction. Wiley, New YorkzbMATHGoogle Scholar
  11. Bell JM, Cameron FK (1903) The: flow of liquids through capillary spaces. J Phys Chem 10:658–674Google Scholar
  12. Betz O, Kölsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthropod Struct Dev 33(1):3–30Google Scholar
  13. Bico J, Quéré D (2000) Liquid trains in a tube. Europhys Lett 51(5):546–550Google Scholar
  14. Bico J, Quéré D (2002) Self-propelling slugs. J Fluid Mech 467:101–127zbMATHGoogle Scholar
  15. Bico J, Roman B, Moulin L, Boudaoud A (2004) Adhesion: elastocapillary coalescence in wet hair. Nature 432(7018):690Google Scholar
  16. Bico J, Reyssat É, Roman B (2018) Elastocapillarity: when surface tension deforms elastic solids. Annu Rev Fluid Mech 50(1):629–659MathSciNetzbMATHGoogle Scholar
  17. Bonn D, Eggers J, Indekeu J, Meunier J (2009) Wetting and spreading. Rev Mod Phys 81(2):739–805Google Scholar
  18. Borno RT, Steinmeyer JD, Maharbiz MM (2006) Transpiration actuation: the design, fabrication and characterization of biomimetic microactuators driven by the surface tension of water. J Micromech Microeng 16:2375–2383Google Scholar
  19. Bradley AT, Box F, Hewitt IJ, Vella D (2018) Wettability-independent droplet transport by bendotaxis. Phys Rev Lett 122:074503Google Scholar
  20. Brochard F (1989) Motions of droplets on solid surfaces induced by chemical or thermal gradients. Langmuir 5(2):432–438Google Scholar
  21. Bruus H (2008) Theoretical microfluidics. Oxford University Press, OxfordGoogle Scholar
  22. Bueno J, Bona-Casas C, Bazilevs Y, Gomez H (2015) Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion. Comput Mech 55(6):1105–1118MathSciNetzbMATHGoogle Scholar
  23. Bueno J, Bazilevs Y, Juanes R, Gomez H (2017a) Droplet motion driven by tensotaxis. Extreme Mech Lett 13:10–16Google Scholar
  24. Bueno J, Casquero H, Bazilevs Y, Gomez H (2017b) Three-dimensional dynamic simulation of elastocapillarity. Meccanica 53:1221–1237MathSciNetzbMATHGoogle Scholar
  25. Bueno J, Bazilevs Y, Juanes R (2018) Soft matter wettability control of droplet durotaxis. Soft Matter 14:1417–1426Google Scholar
  26. Bush JWM, Peaudecerf F, Prakash M, Quéré D (2010) On a tweezer for droplets. Adv Colloid Interface Sci 161:10–14Google Scholar
  27. Cambau T, Bico J, Reyssat E (2011) Capillary rise between flexible walls. EPL 96:24001Google Scholar
  28. Cao Z, Dobrynin AV (2015) Polymeric droplets on soft surfaces: from Neumann’s Triangle to Young’s law. Macromolecules 48(2):443–451Google Scholar
  29. Carré A, Shanahan MER (1995) Direct evidence for viscosity-independent spreading on a soft solid. Langmuir 11(1):24–26Google Scholar
  30. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551Google Scholar
  31. Chakrapani N, Wei B, Carrillo A, Ajayan PM, Kane RS (2004) Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc Natl Acad Sci 101:4009–4012Google Scholar
  32. Chatterjee S, Doshi P, Kumaraswamy G (2017) Capillary uptake in macroporous compressible sponges. Soft Matter 13:5731–5740Google Scholar
  33. Choi YS, Vincent LG, Lee AR, Kretchmer KC, Chirasatitsin S, Dobke MK, Engler AJ (2012) The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. Biomaterials 33(29):6943–6951Google Scholar
  34. Cohen AE, Mahadevan L (2003) Kinks, rings, and rackets in filamentous structures. Proc Natl Acad Sci USA 100(21):12141–12146Google Scholar
  35. Comanns P, Buchberger G, Buchsbaum A, Baumgartner R, Kogler A, Bauer S, Baumgartner W (2015) Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic “Liquid Diode”. J R Soc Interface 12(109):20150415Google Scholar
  36. Daniel S, Chaudhury MK, De Gennes PG (2005) Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir 21(9):4240–4248Google Scholar
  37. Das S, Waghmare PR, Mitra SK (2012) Early regimes of capillary filling. Phys Rev E 86:067301Google Scholar
  38. de Gennes PG, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena- drops, bubbles, pearls, waves. Springer, New YorkzbMATHGoogle Scholar
  39. Dedè L, Borden MJ, Hughes TJR (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19(3):427–465MathSciNetzbMATHGoogle Scholar
  40. Dey R, Daga A, Dasgupta S, Chakraborty S (2015) Electrically modulated dynamic spreading of drops on soft surfaces. Appl Phys Lett 107(3):034101Google Scholar
  41. Dhiman S, Jayaprakash KS, Iqbal R, Sen AK (2018) Self-transport and manipulation of aqueous droplets on oil-submerged diverging groove. Langmuir 34:12359–12368Google Scholar
  42. Dickerson AK, Liu X, Zhu T, Hu DL (2015) Fog spontaneously folds mosquito wings. Phys Fluids 27(2):021901Google Scholar
  43. Discher DE (2005) Tissue cells feel and respon to the stiffness of their substrate. Science 310(5751):1139–1143Google Scholar
  44. Dixon HH, Dublin J, Joly J (1895) On the ascent of sap. Philos Trans R Soc B 186:563–576Google Scholar
  45. Duprat C, Stone HA (2006) Elastocapillarity. In: Fluid–structure interactions in low-Reynolds-number flows. The Royal Society of Chemistry, CambridgeGoogle Scholar
  46. Duprat C, Aristoff JM, Stone HA (2010) Dynamics of elastocapillary rise. J Fluid Mech 679:641–654zbMATHGoogle Scholar
  47. Duprat C, Protière S, Beebe AY (2012) Wetting of flexible fibre arrays. Nature 482:510–513Google Scholar
  48. Dupré A, Dupré P (1867) Théorie mécanique de la chaleur. Ann Chim Phys 4(11):194–220Google Scholar
  49. Eisner T, Aneshansley DJ (2000) Defense by foot adhesion in a beetle (Hemisphaerota Cyanea). Proc Natl Acad Sci USA 97(12):6568–6573Google Scholar
  50. Engel LA, Grassino A, Anthonisen NR (1975) Demonstration of airway closure in man. J Appl Physiol 38(6):1117–1125Google Scholar
  51. Fang G, Li W, Wang X, Qiao G (2008) Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability. Langmuir 24(20):11651–11660Google Scholar
  52. Fargette A, Neukirch S, Antkowiak A (2014) Elastocapillary snapping: capillarity induces snap-through instabilities in small elastic beams. Phys. Rev. Lett 112:137802Google Scholar
  53. Fishlock SJ, Steele D, Puttaswamy SV, Lubarsky GV, Navarro C, Burns WP, McLaughlin J (2018) Fast and controllable elastocapillary flow channels using suspended membranes. IEEE Micro Electro Mech Syst 1165–1168Google Scholar
  54. Flaherty JE, Keller JB, Rubinow SI (1972) Post buckling behavior of elastic tubes and rings with opposite sides in contact. SIAM J Appl Math 23(4):446–455zbMATHGoogle Scholar
  55. George D, Anoop R, Sen AK (2015) Elastocapillary powered manipulation of liquid plug in microchannels. Appl Phys Lett 107:261601Google Scholar
  56. Geraldi NR, Ouali FF, Morris RH, McHale G, Newton MI (2013) Capillary origami and superhydrophobic membrane surfaces. Appl Phys Lett 102(21):214104Google Scholar
  57. Gielok M, Lopes M, Bonaccurso E, Gambaryan-Roisman T (2017) Droplet on an elastic substrate: finite element method coupled with lubrication approximation. Colloids Surf A Physicochem Eng Asp 521:13–21Google Scholar
  58. Gomez H, Bueno J (2018) Interaction of multiphase fluids and solid structures. In: Tezduyar T (ed) Frontiers in computational fluid-structure interaction and flow simulation. Modeling and simulation in science, engineering and technology. Birkhäuser, ChamGoogle Scholar
  59. Grotberg JB, Jensen OE (2004) Biofluid mechanics in flexible tubes. Annu Rev Fluid Mech 36:121–147MathSciNetzbMATHGoogle Scholar
  60. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155Google Scholar
  61. Ha J, Kim J, Jung Y, Yun G, Kim DN, Kim HY (2018) Poro-elasto-capillary wicking of cellulose sponges. Sci Adv 4(3):1–7Google Scholar
  62. Handique K, Burke DT, Mastrangelo CH, Burns MA (2000) Nanoliter liquid metering in microchannels using hydrophobic patterns. Anal Chem 72(17):4100–4109Google Scholar
  63. Hazel AL, Heil M (2010) Surface-tension-induced buckling of liquid-lined elastic tubes: a model pulmonary airway closure. Proc R Soc A Math Phys Eng Sci 461(2058):1847–1868MathSciNetzbMATHGoogle Scholar
  64. Heil M, Hazel AL, Smith JA (2008) The mechanics of airway closure. Respir Physiol Neurobiol 163:214–221Google Scholar
  65. Hoberg TB, Verneuil E, Hosoi AE, Hoberg TB, Verneuil E, Hosoi AE (2014) Elastocapillary flows in flexible tubes. Phys Fluids 26:122103Google Scholar
  66. Holley B, Faghri A (2006) Permeability and effective pore radius measurements for heat pipe and fuel cell applications. Appl Therm Eng 26(4):448–462Google Scholar
  67. Holmes DP, Brun P-T, Pandey A, Protière S (2016) Rising beyond elastocapillarity. Soft Matter 12(22):4886–4890Google Scholar
  68. Hsieh YL (1995) Liquid transport in fabric structures. Text Res J 65(5):299–307Google Scholar
  69. Hu DL, Chan B, Bush JWM (2003) The hydrodynamics of water strider locomotion. Nature 424(6949):663–666Google Scholar
  70. Hughes JMB, Rosenzweig DY, Kivitz PB (1970) Site of airway closure in excised dog lungs: histologic demonstration. J Appl Physiol 29(3):340–344Google Scholar
  71. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetzbMATHGoogle Scholar
  72. Ichimura K, Oh SK, Nakagawa M (2000) Light-driven motion of liquids on a photoresponsive surface. Science 288(5471):1624–1626Google Scholar
  73. Jagota A (2016) Role reversal: liquid “cheerios” on a solid sense each other. Proc Natl Acad Sci 113(27):7294–7295Google Scholar
  74. Jerison ER, Xu Y, Wilen LA, Dufresne ER (2011) Deformation of an elastic substrate by a three-phase contact line. Phys. Rev. Lett 106:186103Google Scholar
  75. Jing H, Sinha S, Das S (2017) Elasto-electro-capillarity: drop equilibrium on a charged, elastic solid. Soft Matter 13(3):554–566Google Scholar
  76. Johnson M, Kamm RD, Hol LW, Shapiro AN, Pedleyz DTJ (1991) The nonlinear growth of surface-tension-driven instabilities of a thin annular film. J Fluid Mech 233:141–156Google Scholar
  77. Joly L (2011) Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes. J Chem Phys 135(21):214705Google Scholar
  78. Jovanović J, Rebrov EV, Nijhuis TA, Kreutzer MT, Hessel V, Schouten JC (2012) Liquid–liquid flow in a capillary microreactor: hydrodynamic flow patterns and extraction performance. Ind Eng Chem Res 51(2):1015–1026Google Scholar
  79. Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, De Rooij N, Delamarche E (2002) Autonomous microfluidic capillary system. Anal Chem 74(24):6139–6144Google Scholar
  80. Jung S, Reis PM, James J, Clanet C, Bush JWM (2009) Capillary origami in nature. Phys Fluids 21(9):1–2zbMATHGoogle Scholar
  81. Jupa R (2017) Ph.D. dissertation. Masaryk UniversityGoogle Scholar
  82. Jurin J (1717) An account of some experiments shown before the royal society; with an enquiry into the cause of the ascent and suspension of water in capillary tubes. Philos Trans R Soc Lond 30(351–363):739–747Google Scholar
  83. Kajiya T, Daerr A, Narita T, Royon L, Lequeux F, Limat L (2013) Advancing liquid contact line on visco-elastic gel substrates: stick-slip vs. continuous motions. Soft Matter 9:454–461Google Scholar
  84. Kajiya T, Brunet P, Royon L, Daerr A, Receveur M, Limat L (2014) A liquid contact line receding on a soft gel surface: dip-coating geometry investigation. Soft Matter 10:8888–8895Google Scholar
  85. Karpitschka S, Das S, Van Gorcum M, Perrin H, Andreotti B, Snoeijer JH (2015) droplets move over viscoelastic substrates by surfing a ridge. Nat Commun 6:1–7Google Scholar
  86. Karpitschka S, Pandey A, Lubbers LA, Weijs JH, Botto L, Das S (2016) Liquid drops attract or repel by the inverted Cheerios effect. Proc Natl Acad Sci 113(27):7403–7407Google Scholar
  87. Keller JB (1998) Surface tension force on a partly submerged body. Phys Fluids Am J 10(19):122102–172108MathSciNetGoogle Scholar
  88. Kim W, Bush JWM (2012) Natural drinking strategies. J Fluid Mech 705:7–25zbMATHGoogle Scholar
  89. Kim H-Y, Mahadevan L (2006) Capillary rise between elastic sheets. J Fluid Mech 548(1):141–150Google Scholar
  90. Kim W, Peaudecerf F, Baldwin MW, Bush JWM (2012a) The Hummingbird’s tongue: a self-assembling capillary syphon. Proc R Soc B Biol Sci 279(1749):4990–4996Google Scholar
  91. Kim G, Cho S, Han J, Lee Y, Roh C, Hong K, Park S (2012b) Effect of drying liquid on stiction of high aspect ratio structures. Solid State Phenom 187:75–78Google Scholar
  92. Kiss MM, Ortoleva-donnelly L, Beer NR, Warner J, Bailey G, Colston BW, Rothberg JM, Link DR, Leamon JH, Bailey CG (2008) High-throughput quantitative polymerase chain reaction in picoliter droplets high-throughput quantitative polymerase chain reaction in picoliter droplets. East 80(23):8975–8981Google Scholar
  93. Köster S, Angilè FE, Duan H, Agresti JJ, Wintner A, Schmitz C, Rowat AC, Merten CA, Pisignano D, Griffiths AD et al (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8(7):1110–1115Google Scholar
  94. Laplace PS (1799) Traité de Mécanique Céleste. Duprat, ParisGoogle Scholar
  95. Lester GR (1961) Contact angles of liquids at deformable solid surfaces. J Colloid Sci 16(4):315–326Google Scholar
  96. Liu JL, Feng XQ (2012) On elastocapillarity: a review. Acta Mech Sin 28:928zbMATHGoogle Scholar
  97. Liu T, Nadermann N, He Z, Strogatz S, Hui C-Y, Jagota A (2017a) Spontaneous droplet motion on a periodically compliant substrate. Langmuir 33:4942–4947Google Scholar
  98. Liu T, Xu X, Nadermann N, He Z, Jagota A, Hui C-Y (2017b) Interaction of droplets separated by an elastic film. Langmuir 33(1):75–81Google Scholar
  99. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152Google Scholar
  100. Lubbers LA, Weijs JH, Botto L, Das S, Andreotti B (2014) Drops on soft solids : free energy and double transition of contact angles. J Fluid Mech 747:1–12MathSciNetzbMATHGoogle Scholar
  101. Lucas VR (1918) Uber das zeitgesetz des kapillaren aufstiegs von flus- sigkeiten. Kolloid Z 23:15–22Google Scholar
  102. Majhy B, Iqbal R, Gaikwad R, Sen AK (2018) Dynamics of capillary flow in an open superoleophilic microchannel and its application to sensing of oil. Microfluid Nanofluidics 22(10):116Google Scholar
  103. Mandal P, Dev R, Chakraborty S (2012) Electrokinetics with “Paper-and-Pencil” devices. Lab Chip 12:4026–4028Google Scholar
  104. Marangoni C (1871) Über die Ausbreitung der Tropfen einer Flüssigkeit auf Oberfläche einer anderen. Ann Phys Chem 143:337–354Google Scholar
  105. Marchand A, Das S, Snoeijer JH, Andreotti B (2012) Contact angles on a soft solid: from Young’s law to Neumann’s law. Phys Rev Lett 109:236101Google Scholar
  106. Maria MS, Chandra TS, Sen AK (2017) Capillary flow-driven blood plasma separation and on-chip analyte detection in microfluidic devices. Microfluid Nanofluid 21:1–21Google Scholar
  107. Martel R, Shea HR, Avouris P (1999) Rings of single-walled carbon nanotubes. Nature 398(6725):299Google Scholar
  108. Mastrangelo CH, Hsu CH (1993a) Mechanical stability and adhesion of microstructures under capillary forces-part I: basic theory. J. Microelectromechanical Syst 2(1):33–43Google Scholar
  109. Mastrangelo CH, Hsu CH (1993b) Mechanical stability and adhesion of microstructures under capillary forces-part II: experiments. J Microelectromechanical Syst 2(1):44–55Google Scholar
  110. Mazouchi A, Homsy GM, Mazouchi A (2000) Thermocapillary migration of long bubbles in cylindrical capillary tubes. Phys Fluids 2015:542zbMATHGoogle Scholar
  111. Neukirch S, Roman B, de Gaudemaris B, Bico J (2007) Piercing a liquid surface with an elastic rod: buckling under capillary forces. J Mech Phys Solids 55:1212–1235MathSciNetGoogle Scholar
  112. Neukirch S, Antkowiak A, Marigo JJ (2013) The bending of an elastic beam by a liquid drop: a variational approach. Proc R Soc A 469:20130066MathSciNetzbMATHGoogle Scholar
  113. Neumann F (1894) Vorlesungen ber die theorie der capillaritt. Ger. B.G. Teubner, LeipzigGoogle Scholar
  114. Noblin X, Rojas NO, Westbrook J, Llorens C, Argentina M, Dumais J (2012) The fern sporangium: a unique catapult. Science 335:1322Google Scholar
  115. Olanrewaju A, Beaugrand M, Yafia M, Juncker D (2018) Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18(16):2323–2347Google Scholar
  116. Pandey A, Nawijn CL, Snoeijer JH, Engstrom TA, Schwarz JM, Biggins JS, Wei Z, Mahadevan L (2015) Elastic Cheerios effect : self-assembly of cylinders on a soft solid. EPL 112:54001Google Scholar
  117. Park SJ, Weon BM, Lee JS, Lee J, Kim J, Je JH (2014) Visualization of asymmetric wetting ridges on soft solids with X-ray microscopy. Nat Commun 5:1–7Google Scholar
  118. Paulsen JD (2019) Wrapping liquids, solids, and gases in thin sheets. Annu Rev Condens Matter Phys 10(1):431–450Google Scholar
  119. Pericet-Camara R, Auernhammer GK, Koynov K, Lorenzoni S, Raiteri R, Bonaccurso E (2009) Solid-supported thin elastomer films deformed by microdrops. Soft Matter 5(19):3611–3617Google Scholar
  120. Pericet-Cámara R, Best A, Butt HJ, Bonaccurso E (2008) Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: an experimental investigation. Langmuir 24:10565–10568Google Scholar
  121. Peskin CS (2002) The immersed boundary method. Acta Numer 2002(2010):479–518MathSciNetzbMATHGoogle Scholar
  122. Piñeirua M, Bico J, Roman B (2010) Capillary origami controlled by an electric field. Soft Matter 6:4491–4496Google Scholar
  123. Pokroy B, Kang SH, Mahadevan L, Aizenberg J (2009a) Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies. Science 323(5911):237–240Google Scholar
  124. Pokroy B, Epstein AK, Persson-Gulda MCM, Aizenberg J (2009b) Fabrication of bioinspired actuated nanostructures with arbitrary geometry and stiffness. Adv Mater 21(4):463–469Google Scholar
  125. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77(11):1725–1726Google Scholar
  126. Ponomarenko A, Quéré D, Clanet C (2011) A universal law for capillary rise in corners. J Fluid Mech 666:146–154zbMATHGoogle Scholar
  127. Prakash M, Quéré D, Bush JWM (2008) Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science 320(May):931–934Google Scholar
  128. Protiere S, Duprat C, Stone HA (2013) Wetting on two parallel fibers: drop to column transitions. Soft Matter 9(1):271–276Google Scholar
  129. Provatas N, Elder K (2010) Phase-field methods in materials science and engineering. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, GermanyGoogle Scholar
  130. Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud CN (2007a) Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys Rev Lett 98(15):156103zbMATHGoogle Scholar
  131. Py C, Bastien R, Bico J, Roman B, Boudaoud A (2007b) 3D aggregation of wet fibers. EPL 77(77):44005Google Scholar
  132. Quere D (1997) Inertial capillarity. Europhys Lett Eur 39(5):533–538Google Scholar
  133. Reddy SP, Samy RA, Sen AK (2016) Interaction of elastocapillary flows in parallel microchannels across a thin membrane. Appl Phys Lett 109(14):141601Google Scholar
  134. Reza Masoodi KMP (2017) Wicking in porous materials: traditional and modern modeling approaches. CRC Press, Boca RatonGoogle Scholar
  135. Rico-Guevara A, Rubega MA (2011) The Hummingbird tongue is a fluid trap, not a capillary tube. Proc Natl Acad Sci USA 108(23):9356–9360Google Scholar
  136. Roman B, Bico J (2010) Elasto-capillarity: deforming an elastic structure with a liquid droplet. J Phys Condens Matter 22(22):493101–493116Google Scholar
  137. Rusanov AI (1978) On the thermodynamics of deformable solid surfaces. J Colloid Interface Sci 63:330–345Google Scholar
  138. Samani A, Plewes D, Samani A, Plewes D, Samani A, Zubovits J (2003) Physics in medicine & biology measuring the elastic modulus of ex vivo small tissue samples samples. Phys Med Biol 48:2183Google Scholar
  139. Samy RA, Sen AK (2019) Elastocapillary flow driven lab-on-a-membrane device based on differential wetting and sedimentation effect for blood plasma separation. J Micromech Microeng 29(6):065001Google Scholar
  140. Samy RA, George D, Sen AK (2017) Bio-inspired liquid transport via elastocapillary interaction of a thin membrane with a liquid meniscus. Soft Matter 13:6858–6869Google Scholar
  141. Schulman RD, Porat A, Charlesworth K, Fortais A, Salez T, Raphaë E, Dalnoki-Veress K (2017) Elastocapillary bending of microfibers around liquid droplets. Soft Matter 13(4):697–888Google Scholar
  142. Shanahan MER (1985) Contact angle equilibrium on thin elastic solids. J Adhes 18(4):247–267Google Scholar
  143. Shanahan MER (1987) The journal of adhesion equilibrium of liquid drops on thin plates; plate rigidity and stability considerations. J Adhes 204:261–274Google Scholar
  144. Shanahan MER (1988) The spreading dynamics of a liquid drop on a viscoelastic solid. J Phys D Appl Phys 21(2):981–985Google Scholar
  145. Shanahan MER, Garré A (1995) Viscoelastic dissipation in wetting and adhesion phenomena. Langmuir 11(4):1396–1402Google Scholar
  146. Siddique J, Anderson DM (2012) Capillary rise of a non-newtonian liquid into a deformable porous material. J Porous Media 14(12):1087–1102Google Scholar
  147. Siddique JI, Anderson DM, Bondarev A (2009) Capillary rise of a liquid into a deformable porous material. Phys Fluids 21(1):013106zbMATHGoogle Scholar
  148. Siddique J, Ahmed A, Aziz A, Khalique C (2017) A review of mixture theory for deformable porous media and applications. Appl Sci 7(9):917Google Scholar
  149. Sidorenko A, Krupenkin T, Taylor A, Fratzl P, Aizenberg J (2007) Reversible switching of hydrogel actuated nanostructures into complex micropatterns. Science 315(January):487–491Google Scholar
  150. Sokuler M, Auernhammer GK, Roth M, Liu C, Bonacurrso E, Butt HJ (2010) The softer the better: fast condensation on soft surfaces. Langmuir 26(3):1544–1547Google Scholar
  151. Songok J, Toivakka M (2016) Controlling capillary-driven surface flow on a paper-based microfluidic channel. Microfluid Nanofluidics 20(4):1–9Google Scholar
  152. Stange M, Dreyer ME, Rath HJ (2003) Capillary driven flow in circular cylindrical tubes. Phys Fluids 15(9):2587–2601zbMATHGoogle Scholar
  153. Style RW, Dufresne ER (2012) Static wetting on deformable substrates, from liquids to soft solids. Soft Matter 6:7177–7184Google Scholar
  154. Style RW, Che Y, Park SJ, Weon BM, Je JH, Hyland C, German GK, Power MP, Wilen LA, Wettlaufer JS et al (2013a) Patterning droplets with durotaxis. Proc Natl Acad Sci 110:12541–12544Google Scholar
  155. Style RW, Boltyanskiy R, Che Y, Wettlaufer JS, Wilen LA, Dufresne ER (2013b) Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys Rev Lett 110(6):1–5Google Scholar
  156. Style RW, Jagota A, Hui C, Dufresne ER (2017) Elastocapillarity: surface tension and the mechanics of soft solids. Ann Rev Condens Matter Phys 8:99–118Google Scholar
  157. Suk JW, Cho J-H (2007) Capillary flow control using hydrophobic patterns. J. Micromechanics Microengineering 17(4):N11–N15Google Scholar
  158. Syms RRA, Yeatman EM, Bright VM, Whitesides GM (2003) Surface tension-powered self-assembly of microstructures—the state-of-the-art. J Microelectromechanical Syst 12:387–417Google Scholar
  159. Tanaka T, Morigami M, Oizumi H, Ogawa T, Uchino SI (1994) Prevention of resist pattern collapse by flood exposure during rinse process. Jpn J Appl Phys 33:L1803Google Scholar
  160. Tas NR, Mela P, Kramer T, Berenschot JW, Van Den Berg A (2003) Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett 3:1537–1540Google Scholar
  161. Tas NR, Escalante M, Van Honschoten JW, Jansen HV, Elwenspoek M (2010) Capillary negative pressure measured by nanochannel collapse. Langmuir 26:1473–1476Google Scholar
  162. Theodorakis PE, Egorov SA, Milchev A (2017) Stiffness-guided motion of a Droplet on a solid substrate. J Chem Phys 146(24):244705Google Scholar
  163. Timoshenko S, Woinowsky-Krieger S (1959) Thoery of plates and shells, 2nd edn. McGraw-Hill Book Company Inc., New YorkzbMATHGoogle Scholar
  164. Trichet L, Le Digabel J, Hawkins RJ, Vedula SRK, Gupta M, Ribrault C, Hersen P, Voituriez R, Ladoux B (2012) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci 109(18):6933–6938Google Scholar
  165. van Brummelen EH, Shokrpour-Roudbari M, Van Zwieten GJ (2016) Elasto-capillarity simulations based on the Navier–Stokes–Cahn–Hilliard equations. Springer, ChamzbMATHGoogle Scholar
  166. van Honschoten JW, Escalante M, Tas NR, Jansen HV, Elwenspoek M (2007) Elastocapillary filling of deformable nanochannels. J Appl Phys 101(9):094310Google Scholar
  167. van Honschoten JW, Escalante M, Tas NR, Elwenspoek M (2009) Formation of liquid menisci in flexible nanochannels. J Colloid Interface Sci 329:133Google Scholar
  168. Vella D, Mahadevan L (2005) The “Cheerios Effect”. Am J Phys 73:817–825Google Scholar
  169. Waghmare PR, Mitra SK (2012) A comprehensive theoretical model of capillary transport in rectangular microchannels. Microfluid Nanofluidics 12(1–4):53–63Google Scholar
  170. Walker GM, Beebe DJ (2002) A passive pumping method for microfluidic devices. Lab Chip 2(3):131–134Google Scholar
  171. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283Google Scholar
  172. Wei Z, Mahadevan L (2014) Continuum dynamics of elastocapillary coalescence and arrest. EPL 106:14002Google Scholar
  173. Weigl B, Domingo G, LaBarre P, Gerlach J (2008) Towards non- and minimally instrumented, microfluidics-based diagnostic devices. Lab Chip 8(12):1999–2014Google Scholar
  174. Weijs JH, Andreotti B, Snoeijer JH (2013) Elasto-capillarity at the nanoscale: on the coupling between elasticity and surface energy in soft solids. Soft Matter 9:8494–8503Google Scholar
  175. Weislogel MM (1997) Steady spontaneous capillary flow in partially coated tubes. AIChE J 43(3):645–654Google Scholar
  176. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994Google Scholar
  177. Wheeler AA, Anderson DM, Fadden GB (1998) Diffusive-interphase methods in fluid mechanics. Annu Rev Fluid Mech 30:139–165Google Scholar
  178. White JP, Heil M (2005) Three-dimensional instabilities of liquid-lined elastic tubes: a thin-film fluid-structure interaction model. Phys Fluids 17(3):031506MathSciNetzbMATHGoogle Scholar
  179. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373Google Scholar
  180. Wong WSY, Li M, Nisbet DR, Craig VSJ, Wang Z, Tricoli A (2016) Mimosa origami: a nanostructure-enabled directional self-organization regime of materials. Sci Adv 2(June):e1600417Google Scholar
  181. Wu D, Chen QD, Xu BB, Jiao J, Xu Y, Xia H, Sun HB (2009) Self-organization of polymer nanoneedles into large-area ordered flowerlike arrays. Appl Phys Lett 95(9):091902Google Scholar
  182. Wu X, Van Zwieten GJ, Van der Zee KG (2014) Stabilized second-order convex splitting schemes ForCahn–Hilliard models with application to diffuse-interfacetumor-growth models. Int J Numer Method Biomed Eng 30(1):180–203Google Scholar
  183. Wyss HM (2016) Rheology of soft materials. In: Nieves AF, Puertas AM (eds) Fluids, colloids and soft materials: an introduction to soft matter physics. Wiley, Hoboken, New JerseyGoogle Scholar
  184. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 37(5):551–575Google Scholar
  185. Xu J, Vilanova G, Gomez H (2016) A mathematical model coupling tumor growth and angiogenesis. PLoS One 11(2):1–20Google Scholar
  186. Ye Z, Li S, Wang C, Shen R, Wen W (2016) Capillary flow control in nanochannels via hybrid surface. RSC Adv 6(4):2774–2777Google Scholar
  187. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87Google Scholar
  188. Zhao M, Dervaux J, Narita T, Lequeux F, Limat L, Roché M (2018) Geometrical control of dissipation during the spreading of liquids on soft solids. Proc Natl Acad Sci 115(8):1748–1753Google Scholar
  189. Zhu Y, Petkovic-Duran K (2009) Capillary flow in microchannels. Microfluid Nanofluid 8:275–282Google Scholar
  190. Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125Google Scholar
  191. Zimmermann M, Hunziker P, Delamarche E (2008) Valves for autonomous capillary systems. Microfluid Nanofluidics 5:395–402Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations