Advertisement

Aggregation of a dense suspension of particles in a microwell using surface acoustic wave microcentrifugation

  • A. Sudeepthi
  • A. K. SenEmail author
  • L. Yeo
Research Paper
  • 169 Downloads

Abstract

We investigate the aggregation of a dense suspension of particles (volume fraction, \(\varphi \sim 0.1\)) in a PDMS microwell by employing surface acoustic wave (SAW) microcentrifugation. In spite of acoustic attenuation at the LiNbO3–PDMS interface, a significant portion of the energy (> 80%) is available for driving fluid actuation, and, in particular, microcentrifugation in the microwell via acoustic streaming. Rapid particle aggregation can then be affected in the microcentrifugation flow, arising as a consequence of the interplay between the hydrodynamic pressure gradient force \(F_{\text{p}}\) responsible for the migration of particles to the center of the microwell and shear-induced diffusion force \(F_{\text{SID}}\) that opposes their aggregation. Herein, we experimentally investigated the combined effect of the particle size \(a\) and sample concentration \(c\) on these microcentrifugation flows. The experimental results show that particles of smaller size and lower sample concentration (such that \(F_{\text{p}} > F_{\text{SID}}\)) are concentrated efficiently into an equilibrium spot, whose diameter scales with the initial particle volume fraction as \(d_{\text{cs}} \sim \varphi^{0.3}\). In contrast, we found that as the local particle volume fraction at the center of the microwell approaches \(\varphi \sim 0.1\) such that \(F_{\text{SID}} \ge F_{\text{p}}\), the particle aggregation fails. Additionally, we also investigate the effects of the well diameter, and the height, lateral positioning of microwell and the liquid volume on the microcentrifugation.

Notes

Acknowledgements

This work was supported by the MHRD, India via grant no. 35-16/2016-T.S.-I and IIT/SRIC/ME/GDD/2016-17/242, SERB, DST, India via grant no. EMR/2014/001151 and IIT Madras (MEE1516843RFTPASHS). The authors acknowledge the CNNP, IIT Madras for supporting the device fabrication. The authors thank Mr. Karthick S. for the fruitful discussions and technical suggestions and Mr. Kumar N. for helping with the micromilling facility for PMMA mold fabrication.

Supplementary material

10404_2019_2243_MOESM1_ESM.docx (12.8 mb)
Supporting Information: Materials and methods used in the experiments, Effect of PDMS microwell wall thickness on acoustic attenuation, NPI plot: concentration of 10 µm particles in a 4.0 mm diameter and 0.5 mm height well, Liquid evaporation rates in microwell vs. sessile droplet, Particle concentration in well vs. droplet, Concentration of particles of different sizes and concentrations, Comparison of expected (as per the closed packing fraction) and the observed aggregation spot diameters from the experiments, Variation of aggregation spot diameter with the particle size and initial particle volume fraction, particle relaxation dynamics for various particle sizes, Size segregation of 10 µm and 30 µm microparticles in a sessile droplet at 20 MHz, Aggregation of particles for irradiation of the SAW at different lateral positions across the microwell, NPI plot for particle concentration in microwell at 108 particles/ml, Aggregation of 1 µm and 3 µm microparticles, Aggregation of particles for irradiation of the SAW at different lateral positions across the microwell. (DOCX 13140 kb)

Supplementary material 2 (AVI 2023 kb)

References

  1. Alhasan L, Qi A, Al-Abboodi A, Rezk A, Chan PPY, Iliescu C, Yeo LY (2016) Rapid enhancement of cellular spheroid assembly by acoustically driven microcentrifugation. ACS Biomater Sci Eng 2(6):1013–1022CrossRefGoogle Scholar
  2. Altshuler G, Manor O (2015) Spreading dynamics of a partially wetting water film atop a MHz substrate vibration. Phys Fluids 27(10):102103CrossRefGoogle Scholar
  3. Banerjee U, Sen AK (2018) Shape evolution and splitting of ferrofluid droplets on a hydrophobic surface in the presence of a magnetic field. Soft Matter 14(15):2915–2922CrossRefGoogle Scholar
  4. Bourquin Y, Syed A, Reboud J, Ranford-Cartwright LC, Barrett MP, Cooper JM (2014) Rare-cell enrichment by a rapid, label-free, ultrasonic isopycnic technique for medical diagnostics. Angew Chem Int Ed 53(22):5587–5590CrossRefGoogle Scholar
  5. Cheeke JDN (2012) Fundamentals and applications of ultrasonic waves. CRC Press LLC, Boca Raton, FloridaCrossRefGoogle Scholar
  6. Chen Y, Li S, Gu Y, Li P, Ding X, Wang L, McCoy JP, Levine SJ, Huang TJ (2014) Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW). Lab Chip 14(5):924CrossRefGoogle Scholar
  7. Chen K, Wu M, Guo F, Li P, Chan CY, Mao Z, Li S, Ren L, Zhang R, Huang TJ et al (2016) Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Lab Chip 22:133–186Google Scholar
  8. Cleckler J, Elghobashi S, Liu F (2012) On the motion of inertial particles by sound waves. Phys Fluids 24(3):033301CrossRefGoogle Scholar
  9. Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A (2015a) Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 6:8686CrossRefGoogle Scholar
  10. Collins DJ, Neild A, Ai Y (2015b) Highly focused high-frequency travelling surface acoustic Waves (SAW) for rapid single-particle sorting. Lab Chip 16:471–479CrossRefGoogle Scholar
  11. Collins DJ, Ma Z, Ai Y (2016) Highly localized acoustic streaming and size-selective sub-micron particle concentration using high frequency microscale focused acoustic fields. Anal Chem 88:5513–5522CrossRefGoogle Scholar
  12. Dentry MB, Yeo LY, Friend JR (2014) Frequency effects on the scale and behavior of acoustic streaming. Phys Rev E Stat Nonlinear Soft Matter Phys 89(1):1–11CrossRefGoogle Scholar
  13. Destgeer G, Cho H, Ha BH, Jung JH, Park J, Sung HJ (2015) Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab Chip 16(4):660–667CrossRefGoogle Scholar
  14. Destgeer G, Jung JH, Park J, Ahmed H, Sung HJ (2017) Particle separation inside a sessile droplet with variable contact angle using surface acoustic waves. Anal Chem 89(1):736–744CrossRefGoogle Scholar
  15. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038CrossRefGoogle Scholar
  16. Ding X, Shi J, Lin S-CS, Yazdi S, Kiraly B, Huang TJ (2012) Tunable patterning of microparticles and cells using standing surface acoustic waves. Lab Chip 12(14):2491–2497CrossRefGoogle Scholar
  17. Eckart C (1948) Vortices and streams caused by sound waves. Phys Rev 73(1):68–76zbMATHCrossRefGoogle Scholar
  18. Franke T, Braunmuller S, Schmid L, Wixforth A, Weitz DA (2010) Surface acoustic wave actuated cell sorting (SAWACS). Lab Chip 10(6):789–794CrossRefGoogle Scholar
  19. Guo F, Mao Z, Chen Y, Xie Z, Lata JP, Li P, Ren L, Liu J, Yang J, Dao M et al (2016) Three-dimensional manipulation of single cells using surface acoustic waves. Proc Natl Acad Sci 113(6):1522–1527CrossRefGoogle Scholar
  20. Ha BH, Lee KS, Destgeer G, Park J, Choung JS, Jung JH, Shin JH, Sung HJ (2016) Acoustothermal heating of polydimethylsiloxane microfluidic system. Sci Rep 2015(5):11851Google Scholar
  21. Han S-I, Soo Kim H, Han A (2017) In-droplet cell concentration using dielectrophoresis. Biosens Bioelectron 97:41–45CrossRefGoogle Scholar
  22. Karthick S, Sen AK (2016) Role of shear induced diffusion in acoustophoretic focusing of dense suspensions. Appl Phys Lett 109(1):014101CrossRefGoogle Scholar
  23. Karthick S, Sen AK (2017) Improved understanding of the acoustophoretic focusing of dense suspensions in a microchannel. Phys Rev E 96(5):052606CrossRefGoogle Scholar
  24. Kishor R, Ma Z, Sreejith S, Seah YP, Wang H, Ai Y, Wang Z, Lim TT, Zheng Y (2017) Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system. Sens Actuators B Chem 252:568–576CrossRefGoogle Scholar
  25. Kurashina Y, Takemura K, Friend J (2017) Cell agglomeration in the wells of a 24-well plate using acoustic streaming. Lab Chip 17:876–886CrossRefGoogle Scholar
  26. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76(6):1571–1579CrossRefGoogle Scholar
  27. Leighton D, Acrivos A (1987) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181(1):415CrossRefGoogle Scholar
  28. Li H, Friend JR, Yeo LY (2007) Surface acoustic wave concentration of particle and bioparticle suspensions. Biomed Microdevices 9(5):647–656CrossRefGoogle Scholar
  29. Li P, Mao Z, Peng Z, Zhou L, Chen Y, Huang P-H, Truica CI, Drabick JJ, El-Deiry WS, Dao M et al (2015) Acoustic separation of circulating tumor cells. Proc Natl Acad Sci USA 112(16):4970–4975CrossRefGoogle Scholar
  30. Lighthill SJ (1978) Acoustic streaming. J Sound Vib 61(3):391–418zbMATHCrossRefGoogle Scholar
  31. Liu W-Y, Fu X-T, Zhang X-Q (2016) The attenuation of poly(dimethylsiloxane) film to surface acoustic wave on a piezoelectric substrate. Ferroelectrics 493(1):62–68CrossRefGoogle Scholar
  32. Ma Z, Collins DJ, Ai Y (2017) Fluorescence activated cell sorting via focused traveling surface acoustic waves (FTSAWs). J Acoust Soc Am 141(5):4014CrossRefGoogle Scholar
  33. Meng L, Cai F, Jin Q, Niu L, Jiang C, Wang Z, Wu J, Zheng H (2011) Acoustic aligning and trapping of microbubbles in an enclosed PDMS microfluidic device. Sens Actuators B Chem 160(1):1599–1605CrossRefGoogle Scholar
  34. Munaz A, Shiddiky MJA, Nguyen N-T (2018) recent advances and current challenges in magnetophoresis based micro magnetofluidics. Biomicrofluidics 12:31501CrossRefGoogle Scholar
  35. Nam J, Lee Y, Shin S (2011) Size-dependent microparticles separation through standing surface acoustic waves. Microfluid Nanofluid 11(3):317–326CrossRefGoogle Scholar
  36. Raghavan RV, Friend JR, Yeo LY (2010) Particle concentration via acoustically driven microcentrifugation: microPIV flow visualization and numerical modelling studies. Microfluid Nanofluid 8(1):73–84CrossRefGoogle Scholar
  37. Reboud J, Auchinvole C, Syme CD, Wilson R, Cooper JM (2013) Acoustically controlled enhancement of molecular sensing to assess oxidative stress in cells. Chem Commun (Camb) 49(28):2918–2920CrossRefGoogle Scholar
  38. Rezk AR, Ramesan S, Yeo LY (2018) Plug-and-actuate on demand: multimodal individual addressability of microarray plates using modular hybrid acoustic wave technology. Lab Chip 18(3):406–411CrossRefGoogle Scholar
  39. Rife JC, Bell MI, Horwitz JS, Kabler MN, Auyeung RCY, Kim WJ (2000) Miniature valveless ultrasonic pumps and mixers. Sens Actuator A Phys 86(1–2):135–140CrossRefGoogle Scholar
  40. Rogers PR, Friend JR, Yeo LY (2010) Exploitation of Surface acoustic waves to drive size-dependent microparticle concentration within a droplet. Lab Chip 10(21):2979–2985CrossRefGoogle Scholar
  41. Sajeesh P, Sen AK (2014) Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17(1):1–52CrossRefGoogle Scholar
  42. Shi J, Ahmed D, Mao X, Lin SS, Lawit A, Huang TJ (2009) Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9(20):2890–2895CrossRefGoogle Scholar
  43. Shi J, Yazdi S, Lin SS, Ding X, Chiang I-K, Sharp K, Huang TJ (2011) Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 11(14):2319–2324CrossRefGoogle Scholar
  44. Shilton R, Tan MK, Yeo LY, Friend JR (2014) By focused surface acoustic waves. J Appl Phys 2008(014910):1–9Google Scholar
  45. Tenje M, Fornell A, Ohlin M, Nilsson J (2018) Particle manipulation methods in droplet microfluidics. Anal Chem 90(3):1434–1443CrossRefGoogle Scholar
  46. Tiwari P, Antal SP, Podowski MZ (2009) Modeling shear-induced diffusion force in particulate flows. Comput Fluids 38:727–737zbMATHCrossRefGoogle Scholar
  47. Wixforth A, Strobl C, Gauer C, Toegl A, Scriba J, Guttenberg ZV (2004) Acoustic manipulation of small droplets. Anal Bioanal Chem 379(7–8):982–991CrossRefGoogle Scholar
  48. Yabe A, Hamate Y, Hara M, Oguchi H, Nagasawa S, Kuwano H (2014) A self-converging atomized mist spray device using surface acoustic wave. Microfluid Nanofluid 17(4):701–710CrossRefGoogle Scholar
  49. Yeo LY, Hou D, Maheshswari S, Chang HC (2006) Electrohydrodynamic surface microvortices for mixing and particle trapping. Appl Phys Lett 88(23):233512CrossRefGoogle Scholar
  50. Zeng J, Chen C, Vedantam P, Tzeng T-R, Xuan X (2013) Magnetic concentration of particles and cells in ferrofluid flow through a straight microchannel using attracting magnets. Microfluid Nanofluid 15(1):49–55CrossRefGoogle Scholar
  51. Zhang J, Yan S, Yuan D, Alici G, Nguyen N-T, Ebrahimi Warkiani M, Li W (2016) Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16(1):10–34CrossRefGoogle Scholar
  52. Zhu G-P, Hejiazan M, Huang X, Nguyen N-T (2014) Magnetophoresis of diamagnetic microparticles in a weak magnetic field. Lab Chip 14(24):4609–4615CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Microfluidics Laboratory, Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Micro/Nanophysics Research Laboratory, School of EngineeringRoyal Melbourne Institute of Technology (RMIT University)MelbourneAustralia

Personalised recommendations