Pressure-driven flow through PDMS-based flexible microchannels and their applications in microfluidics

Abstract

Flexible microchannels have soft walls which undergo deformation under the influence of fluid flow. The dimensional and flexural similarity of flexible microchannels make them ideal candidates for mimicking biological structures such as blood vessels and air pathway in lungs. The analysis of fluid flow and the dynamics of interaction of cells through flexible arteries provide valuable insights about cardiovascular-related diseases. Flexible microchannels can be instrumental in the in vitro investigation of such diseases. This review discusses the recent developments in pressure-driven flow through flexible microchannels and their applications. Here we present the existing theoretical models that predict the deformation and pressure-flow characteristics of flexible microchannels and the corresponding experimental validations. We compare the models for laminar flow of Newtonian fluids through flexible microchannels with their corresponding experimental validation and enlist their limitations. We discuss in detail the various applications of flexible microchannels and their relevance in cell mechanophenotyping, micropumps, microflow stabilizers, and organ-on-chip devices. The insight into the flow dynamics provided herein will extend using flexible microchannels to develop organs-on-chip and other microfluidic applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Adzima BJ, Velankar SS (2006) Pressure drops for droplet flows in microfluidic channels. J Micromech Microeng 16(8):1504–1510

    Article  Google Scholar 

  2. Anoop R, Sen AK (2015) Capillary flow enhancement in rectangular polymer microchannels with a deformable wall. Phys Rev E 92(1):013024

    MathSciNet  Article  Google Scholar 

  3. Becker H, Gärtner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1):12–26

    Article  Google Scholar 

  4. Beech JP, Tegenfeldt JO (2008) Tuneable separation in elastomeric microfluidics devices. Lab Chip 8(5):657–659

    Article  Google Scholar 

  5. Brown XQ, Ookawa K, Wong JY (2005) Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: Interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. Biomaterials 26(16):3123–3129

    Article  Google Scholar 

  6. Bruus H (2008) Theoretical microfluidics. Oxford University Press, Oxford

    Google Scholar 

  7. Bufler H (1971) Theory of elasticity of a multilayered medium. J Elast 1(2):125–143

    MathSciNet  Article  Google Scholar 

  8. Chakraborty D, Prakash JR, Friend J, Yeo L (2012) Fluid-structure interaction in deformable microchannels. Phys Fluids 24(10):102002

    Article  Google Scholar 

  9. Chen Y, Zhang L, Chen G (2008) Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis 29(9):1801–1814

    Article  Google Scholar 

  10. Cheung P, Toda-Peters K, Shen AQ (2012) In situ pressure measurement within deformable rectangular polydimethylsiloxane microfluidic devices. Biomicrofluidics 6(2):026501

    Article  Google Scholar 

  11. Christov IC, Cognet V, Shidhore TC, Stone HA (2018) Flow rate-pressure drop relation for deformable shallow microfluidic channels. J Fluid Mech 841:267–286

    MathSciNet  Article  Google Scholar 

  12. Darby SG, Moore MR, Friedlander TA et al (2010) A metering rotary nanopump for microfluidic systems. Lab Chip 10(23):3218–3226

    Article  Google Scholar 

  13. Eroshenko N, Ramachandran R, Yadavalli VK, Rao RR (2013) Effect of substrate stiffness on early human embryonic stem cell differentiation. J Biol Eng 7(1):7

    Article  Google Scholar 

  14. George D, Anoop R, Sen AK (2015) Elastocapillary powered manipulation of liquid plug in microchannels. Appl Phys Lett 107(26):261601

    Article  Google Scholar 

  15. Gervais T, El-Ali J, Günther A, Jensen KF (2006) Flow-induced deformation of shallow microfluidic channels. Lab Chip 6(4):500–507

    Article  Google Scholar 

  16. Guan G, Chen PCY, Peng WK et al (2012) Real-time control of a microfluidic channel for size-independent deformability cytometry. J Micromech Microeng 22(10):105037

    Article  Google Scholar 

  17. Hardy BS, Uechi K, Zhen J, Kavehpour HP (2009) The deformation of flexible PDMS microchannels under a pressure driven flow. Lab Chip 9(7):935–938

    Article  Google Scholar 

  18. Ho KKY, Lee LM, Liu AP (2016) Mechanically activated artificial cell by using microfluidics. Sci Rep 6:32912

    Article  Google Scholar 

  19. Holden MA, Kumar S, Beskok A, Cremer PS (2003) Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow. J Micromech Microeng 13(3):412–418

    Article  Google Scholar 

  20. Hosokawa K, Hanada K, Maeda R (2002) A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices. J Micromech Microeng 12(1):1–6

    Article  Google Scholar 

  21. Huang SB, Zhao Y, Chen D et al (2014) A clogging-free microfluidic platform with an incorporated pneumatically driven membrane-based active valve enabling specific membrane capacitance and cytoplasm conductivity characterization of single cells. Sens Actuator B-Chem 190:928–936

    Article  Google Scholar 

  22. Huh D, Fujioka H, Tung Y-C et al (2007) Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci 104(48):18886–18891

    Article  Google Scholar 

  23. Huh D, Matthews BD, Mammoto A et al (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668

    Article  Google Scholar 

  24. Ichikawa N, Hosokawa K, Maeda R (2004) Interface motion of capillary-driven flow in rectangular microchannel. J Colloid Interface Sci 280(1):155–164

    Article  Google Scholar 

  25. Iyer V, Raj A, Annabattula RK, Sen AK (2015) Experimental and numerical studies of a microfluidic device with compliant chambers for flow stabilization. J Micromech Microeng 25(7):075003

    Article  Google Scholar 

  26. Jang K-J, Suh K-Y (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10(1):36–42

    Article  Google Scholar 

  27. Kim YW, Yoo JY (2008) The lateral migration of neutrally-buoyant spheres transported through square microchannels. J Micromech Microeng 18(6):065015

    Article  Google Scholar 

  28. Kumar N, George D, Sajeesh P et al (2016) Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements. J Micromech Microeng 26(7):075013

    Article  Google Scholar 

  29. Lee C-H, Hsiung S-K, Lee G-B (2007) A tunable microflow focusing device utilizing controllable moving walls and its applications for formation of micro-droplets in liquids. J Micromech Microeng 17(6):1121–1129

    Article  Google Scholar 

  30. Li H, Olsen MG (2006) MicroPIV measurements of turbulent flow in square microchannels with hydraulic diameters from 200 µm to 640 µm. Int J Heat Fluid Flow 27(1):123–134

    Article  Google Scholar 

  31. Lighthill MJ (1968) Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes. J Fluid Mech 34(1):113–143

    Article  Google Scholar 

  32. Maria MS, Rakesh PE, Chandra TS, Sen AK (2017) Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation. Sci Rep 7:43457

    Article  Google Scholar 

  33. Mazumdar JN (1992) Biofluid mechanics. World Sci, Singapore

    Google Scholar 

  34. Michel B, Bernard A, Bietsch A, Delamarche E (2001) Printing meets lithography: soft approaches to high-resolution printing. IBM J Res Dev 45(5):697–719

    Article  Google Scholar 

  35. Palchesko RN, Zhang L, Sun Y, Feinberg AW (2012) Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One 7(12):e51499

    Article  Google Scholar 

  36. Pang Y, Kim H, Liu Z, Stone H (2014) A soft microchannel decreases polydispersity of droplet generation. Lab Chip 14(20):4029–4034

    Article  Google Scholar 

  37. Raj A, Sen AK (2016) Flow-induced deformation of compliant microchannels and its effect on pressure—flow characteristics. Microfluid Nanofluidics 20(2):31

    Article  Google Scholar 

  38. Raj A, Sen AK (2018) Entry and passage behavior of biological cells in a constricted compliant microchannel. RSC Adv 8(37):20884–20893

    Article  Google Scholar 

  39. Raj A, Halder R, Sajeesh P, Sen AK (2016) Droplet generation in a microchannel with a controllable deformable wall. Microfluid Nanofluidics 20(7):102

    Article  Google Scholar 

  40. Raj MK, DasGupta S, Chakraborty S (2017) Hydrodynamics in deformable microchannels. Microfluid Nanofluidics 21(4):70

    Article  Google Scholar 

  41. Ravetto A, Hoefer IE, den Toonder JMJ, Bouten CVC (2016) A membrane-based microfluidic device for mechano-chemical cell manipulation. Biomed Microdevices 18(2):31

    Article  Google Scholar 

  42. Reddy SP, Samy RA, Sen AK (2016) Interaction of elastocapillary flows in parallel microchannels across a thin membrane. Appl Phys Lett 109(14):141601

    Article  Google Scholar 

  43. Shidhore TC, Christov IC (2017) Static response of deformable microchannels: A comparative modelling study. J Phys Condens Matter 30(5):054002

    Article  Google Scholar 

  44. Shin M, Matsuda K, Ishii O et al (2004) Endothelialized networks with a vascular geometry in microfabricated poly (dimethyl siloxane). Biomed Microdevices 6(4):269–278

    Article  Google Scholar 

  45. Singh S, Kumar N, George D, Sen AK (2015) Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump. Sens Actuators A Phys 225:81–94

    Article  Google Scholar 

  46. Sneha Maria M, Rakesh PE, Chandra TS, Sen AK (2016) Capillary flow of blood in a microchannel with differential wetting for blood plasma separation and on-chip glucose detection. Biomicrofluidics 10(5):054108

    Article  Google Scholar 

  47. Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19(22):9127–9133

    Article  Google Scholar 

  48. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  49. Walter N, Micoulet A, Seufferlein T, Spatz JP (2011) Direct assessment of living cell mechanical responses during deformation inside microchannel restrictions. Biointerphases 6(3):117–125

    Article  Google Scholar 

  50. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  51. Xiang J, Cai Z, Zhang Y, Wang W (2016) A micro-cam actuated linear peristaltic pump for microfluidic applications. Sens Actuators A Phys 251:20–25

    Article  Google Scholar 

  52. Yang B, Lin Q (2009) A compliance-based microflow stabilizer. J Microelectromech Syst 18(3):539–546

    Article  Google Scholar 

  53. Zhang W, Choi DS, Nguyen YH et al (2013) Studying cancer stem cell dynamics on PDMS surfaces for microfluidics device design. Sci Rep 3:2332

    Article  Google Scholar 

  54. Zhang X, Chen Z, Huang Y (2015) A valve-less microfluidic peristaltic pumping method. Biomicrofluidics 9(1):014118

    Article  Google Scholar 

  55. Zheng Y, Fujioka H, Bian S et al (2009) Liquid plug propagation in flexible microchannels: a small airway model. Phys Fluids 21(7):071903

    Article  Google Scholar 

  56. Zheng Y, Shojaei-Baghini E, Azad A et al (2012) High-throughput biophysical measurement of human red blood cells. Lab Chip 12(14):2560–2567

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Sen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raj, A., Suthanthiraraj, P.P.A. & Sen, A.K. Pressure-driven flow through PDMS-based flexible microchannels and their applications in microfluidics. Microfluid Nanofluid 22, 128 (2018). https://doi.org/10.1007/s10404-018-2150-5

Download citation

Keywords

  • Pressure-flow Characteristics
  • Thin PDMS Membrane
  • PDMS Microchannels
  • PDMS Wall
  • Droplet Generation