Skip to main content

Multi-dimensional confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

Abstract

We present a new multi-dimensional confocal laser scanning microscopy (CLSM) image correlation for nanoparticle flow velocimetry that is robust to sources of decorrelating errors. Random and bias errors from nanoparticle flow measurements exacerbate with increased dimensionality in CLSM images, rendering measurements unusable. Our new algorithm tackles these measurement limitations in twofold. First, we model and correct for the bias errors introduced by the effects of the volumetric laser scanning image acquisition. Second, we developed a new spectral filter using a phase-quality masking technique that optimizes its size for the spectral content of CLSM images, without requiring a priori knowledge of displacement fields or flow tracer properties. We validated our algorithm using synthetic images and experimentally obtained 2D and 3D CLSM images of nanoparticle flow through a micro-channel. We show that our technique significantly outperforms the standard cross-correlation (SCC) in reducing both the random and bias errors and accelerated the convergence of ensemble correlation velocity measurements from CLSM images.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Digman MA et al (2005) Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys J 88(5):L33–L36

    Article  Google Scholar 

  • Digman MA, Stakic M, Gratton E (2013) Raster image correlation spectroscopy and number and brightness analysis. Methods Enzymol 518:121–144

    Article  Google Scholar 

  • Eckstein A, Vlachos PP (2009a) Assessment of advanced windowing techniques for digital particle image velocimetry (DPIV). Meas Sci Technol 20(7):075402

    Article  Google Scholar 

  • Eckstein A, Vlachos PP (2009b) Digital particle image velocimetry (DPIV) robust phase correlation. Meas Sci Technol 20(5):055401

    Article  Google Scholar 

  • Eckstein AC, Charonko J, Vlachos P (2008) Phase correlation processing for DPIV measurements. Exp Fluids 45(3):485–500

    Article  Google Scholar 

  • Efford N (2000) Digital image processing: a practical introduction using java (with CD-ROM). Addison-Wesley Longman Publishing Co., Inc., Boston

    Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322(8):549–560

    Article  Google Scholar 

  • Ghiglia DC, Pritt MD (1998) Two-dimensional phase unwrapping: theory, algorithms, and software, vol. xiv. Wiley, New York, p 493

    MATH  Google Scholar 

  • Jonkman J, Brown CM (2015) Any way you slice it-a comparison of confocal microscopy techniques. J Biomol Tech 26(2):54–65

    Google Scholar 

  • Jun BH et al. (2016) Nanoparticle flow velocimetry with image phase correlation for confocal laser scanning microscopy. Meas Sci Technol. 27(10):104003

    Article  Google Scholar 

  • Malone MH et al (2007) Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae. BMC Biotechnol 7:40

    Article  Google Scholar 

  • Meinhart CD, Wereley ST, Santiago JG (1999) PIV measurements of a microchannel flow. Exp Fluids 27(5):414–419

    Article  Google Scholar 

  • Meinhart CD, Wereley ST, Santiago JG (2000) A PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng Trans ASME 122(2):285–289

    Article  Google Scholar 

  • Olsen MG, Adrian RJ (2000) Brownian motion and correlation in particle image velocimetry. Opt Laser Technol 32(7–8):621–627

    Article  Google Scholar 

  • Olsen MG, Adrian RJ (2001) Measurement volume defined by peak-finding algorithms in cross-correlation particle image velocimetry. Meas Sci Technol 12(2):N14–N16

    Article  Google Scholar 

  • Pan X et al (2009) Line scan fluorescence correlation spectroscopy for three-dimensional microfluidic flow velocity measurements. J Biomed Opt 14(2):024049

    Article  Google Scholar 

  • Raben JS et al (2013) Improved accuracy of time-resolved micro-particle image velocimetry using phase-correlation and confocal microscopy. Microfluid Nanofluid 14(3–4):431–444

    Article  Google Scholar 

  • Raffel M (2007) Particle image velocimetry: a practical guide, 2nd edn. Springer, Heidelberg, New York, p 448

    Google Scholar 

  • Rossow MJ, Mantulin WW, Gratton E (2010a) Scanning laser image correlation for measurement of flow. J Biomed Opt 15(2):026003

    Article  Google Scholar 

  • Rossow MJ et al (2010b) Raster image correlation spectroscopy in live cells. Nat Protoc 5(11):1761–1774

    Article  Google Scholar 

  • Sironi L et al (2014) In vivo flow mapping in complex vessel networks by single image correlation. Sci Rep 4:7341

    Article  Google Scholar 

  • Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8(12):1379–1392

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlos P. Vlachos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jun, B.H., Giarra, M. & Vlachos, P.P. Multi-dimensional confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry. Microfluid Nanofluid 22, 89 (2018). https://doi.org/10.1007/s10404-018-2105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2105-x

Keywords

  • CLSM Images
  • Nanoparticles Flow
  • Bias Error Correction
  • CLSM Measurements
  • Performed Particle Image Velocimetry