Advertisement

A silicon rectangular micro-orifice for gas flow measurement at moderate Reynolds numbers: design, fabrication and flow analyses

  • A. Amnache
  • M. Omri
  • L. G. Fréchette
Research Paper
  • 135 Downloads

Abstract

This work describes a micro-flowmeter for moderate flow rates of gases based on a differential pressure measurement. The micro-flowmeters consist of a microfabricated silicon–glass rectangular micro-orifice plate, with external pressure measurement. We experimentally evaluate the effects of geometrics parameters, Reynolds number and compressibility on the discharge coefficient. The paper examines a series of 13 rectangular micro-orifice sizes, with orifice hydraulic diameters ranging from 115 to 362 µm. The behavior of the discharge coefficient is presented for orifice Reynolds numbers ranging from 200 to 18000. Agreement is shown between the experimental and numerical results of the discharge coefficient. The micro-flowmeters measure moderate flow of air ranging from 1 to 106 mg/s. This demonstration implements a design method of micro-flowmeters that can be used in a broad range of microfluidic applications, such as microreactors and power MEMS.

Keywords

Micro-orifice Flowmeter Discharge coefficient Microfluidic Flow rate 

Notes

Acknowledgements

The authors would like to thank Dr. Gholamreza Mirshekari for his technical contribution in cleanroom fabrication and methods. This work was supported by the NSERC and Canada Research Programs. The authors gratefully acknowledge this support.

References

  1. Amnache A, Omri M, Fréchette LG (2010) An analytical and numerical study of rectangular orifice plate microflowmeters. ASME Int Mech Eng Congress Expos Proc 10:659–665Google Scholar
  2. Berberig O, Nottmeyer K, Mizuno J, Kanai Y (1998) The Prandtl micro flow sensor (PMFS): a novel silicon diaphragm capacitive sensor for flow-velocity measurement. Sens Actuators A Phys 66:93–98CrossRefGoogle Scholar
  3. Bouwstra S, Legtenberg R, Tilmans H, Elwenspoek M (1990) Resonating microbridge mass flow sensor. Sens Actuators A Phys 21:332–335CrossRefGoogle Scholar
  4. Cubukcu AS, Romero DFR, Urban GA (2014) A dynamic thermal flow sensor for simultaneous measurement of thermal conductivity and flow velocity of gases. Sens Actuators A Phys 208:73–87CrossRefGoogle Scholar
  5. Dunn-Rankin D, Martins Leal E, Walther DC (2005) Personal power systems. Prog Energy Combust Sci 31:422–465CrossRefGoogle Scholar
  6. Eiamsa-ard S, Ridluan A, Somravysin P, Promvonge P (2008) Numerical investigation of turbulent flow through a circular orifice. KMITL Sci J 8:43–50Google Scholar
  7. Elwenspoek M (1999) Thermal flow micro sensors. Proc Int Semicond Conf 2:423–435Google Scholar
  8. Fréchette LG (2015) Micro energy conversion devices. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, New YorkGoogle Scholar
  9. Hasegawa T, Ushida A, Narumi T (2009) Huge reduction in pressure drop of water, glycerol/water mixture, and aqueous solution of polyethylene oxide in high speed flows through micro-orifices. Phys Fluids 21:052002–052009CrossRefzbMATHGoogle Scholar
  10. Hollingshead CL, Johnson MC, Barfuss SL, Spall RE (2011) Discharge coefficient performance of Venturi, standard concentric orifice plate, V-cone and wedge flow meters at low Reynolds numbers. J Pet Sci Eng 78:559–566CrossRefGoogle Scholar
  11. Jankovski TA, Schmierer EN, Prenger FC, Ashworth SP (2008) A series pressure drop representation for flow through orifice tubes. J Fluids Eng 130:51204-1-7Google Scholar
  12. Jensen KF (2017) Flow chemistry—microreaction technology comes of age. AIChE J 63:858–869CrossRefGoogle Scholar
  13. Johansen FC (1930) Flow through pipe orifices at low Reynolds numbers. Proc R Soc Lond 126:231–245CrossRefzbMATHGoogle Scholar
  14. Kiljanski T (1993) Discharge coefficient for free jets from orifices at low Reynolds number. Trans ASME J Fluids Eng 115:778–781CrossRefGoogle Scholar
  15. Kuo JTW, Yu L, Meng E (2012) Micromachined thermal flow sensors—a review. Micromachines 3:550–573CrossRefGoogle Scholar
  16. Lee C, Fréchette LG (2011) A silicon microturbopump for a Rankine cycle power generation microsystem—part I: component and system design. J Microelectromech Syst 20:312–325CrossRefGoogle Scholar
  17. Liamini M, Shahriar H, Vengallatore S, Fréchette LG (2011) Design methodology for a rankine microturbine: thermomechanical analysis and material selection. J Microelectromech Syst 20:339–351CrossRefGoogle Scholar
  18. Miller RW (1996) Flow measurement engineering handbook, 3rd edn. McGraw-Hill, BostonGoogle Scholar
  19. Mishra C, Peles Y (2005) Incompressible and compressible flows through rectangular microorifices entrenched in silicon microchannels. J Microelectromech Syst 14:1000–1012CrossRefGoogle Scholar
  20. Morinin GL, Spiga M, Tartarini P (2004) The rarefaction effect on the friction factor of gas flow in microchannels. Superlattices Microstruct 35:587–599CrossRefGoogle Scholar
  21. Nguyen SD, Paprotny I, Wright PK, White RM (2015) MEMS capacitive flow sensor for natural gas pipelines. Sens Actuators A Phys 231:28–34CrossRefGoogle Scholar
  22. Phares DJ, Smedley GT, Zhou J (2005) Laminar flow resistance in short microtubes. Int J Heat Fluid Flow 26:506–512CrossRefGoogle Scholar
  23. Shapiro A (1953) Dynamics and thermodynamics of compressible fluid flow, 1st edn. Ronald Press Co, New YorkGoogle Scholar
  24. Svedin N, Kalvesten E, Stemme G (2003) A lift force sensor with integrated hot-chips for wide range flow measurements. Sens Actuators A Phys 109:120–130CrossRefGoogle Scholar
  25. Wang YH, Chen CP, Chang CM, Lin CP, Lin CH, Fu LM, Lee CY (2009) MEMS-based gas flow sensors. Microfluid Nanofluid 6:333–346CrossRefGoogle Scholar
  26. White FM (1999) Fluid mechanics, 4th edn. McGraw-Hill, BostonGoogle Scholar
  27. Wiles C, Watts P (2011) Recent advances in micro reaction technology. Chem Commun 47:6512–6535CrossRefGoogle Scholar
  28. Xue N, Yan WP (2012) A silicon–glass-based microfabricated wide range thermal distribution gas flow meter. Sens Actuators A Phys 173:145–151CrossRefGoogle Scholar
  29. Zivkovic V, Zerna P, Alwahabi ZT, Biggs MJ (2013) A pressure drop correlation for low Reynolds number Newtonian flows through a rectangular orifice in a similarly shaped micro-channel. Chem Eng Res Des 91:1–6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Interdisciplinaire d’Innovation Technologique (3IT)Université de SherbrookeSherbrookeCanada
  2. 2.Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463Université de SherbrookeSherbrookeCanada
  3. 3.King Abdulaziz University, Deanship of Scientific ResearchJeddahKingdom of Saudi Arabia

Personalised recommendations