Parallel trapping of single motile cells based on vibration-induced flow

  • Takeshi Hayakawa
  • Yusuke Akita
  • Fumihito Arai
Research Paper


We propose an on-chip cell manipulation method for trapping single motile cells in parallel. The proposed method traps large (\(\gtrsim \,50\,\upmu \hbox {m}\)) motile cells in parallel, which is difficult to achieve by conventional cell manipulation methods based on optical, acoustic, electric, or magnetic forces. The trapping method exploits the flow induced by applying a vibration to a microfluidic chip with microstructures on its surface. By applying a rectilinear vibration to a chip with pairs of micropillars, we can trap single motile cells within the local flow generated between the micropillars. Using the proposed method, we trapped single Euglena gracilis cells (of size 50–100 \(\upmu \hbox {m}\)) in parallel. Moreover, we evaluate the trapping performance for various micropillar array design parameters and the controllability of the trapping-flow velocity by varying the amplitude of the vibration. The proposed method was then demonstrated in a motility evaluation of motile cells. The demonstration confirms the potential of the proposed method in realizing high-throughput motility evaluations of single motile cells.


Acoustofluidics Cell manipulation On-chip cell Manipulation Vibration-induced flow Motile cells 



We appreciate the support by Dr. Takuro Ito for teaching how to treat E. gracilis. We thank Kim Moravec, PhD, from Edanz Group ( for editing a draft of this manuscript. This study was supported by JSPS KAKENHI Grant Numbers JP15H06268 and JP17K14623.

Supplementary material

Supplementary material 1 (avi 4997 KB)

Supplementary material 2 (avi 4858 KB)

Supplementary material 3 (avi 3323 KB)


  1. Adler J (1966) Chemotaxis in bacteria. Science 153(3737):708CrossRefGoogle Scholar
  2. Berg HC, Brown DA et al (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239(5374):500CrossRefGoogle Scholar
  3. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108(2):111CrossRefGoogle Scholar
  4. Chan V, Asada HH, Bashir R (2014) Utilization and control of bioactuators across multiple length scales. Lab Chip 14(4):653CrossRefGoogle Scholar
  5. Chen J, Kang Z, Kong SK, Ho HP (2015) Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles. Opt Lett 40(17):3926CrossRefGoogle Scholar
  6. Ding X, Lin SCS, Kiraly B, Yue H, Li S, Chiang IK, Shi J, Benkovic SJ, Huang TJ (2012) On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc Natl Acad Sci 109(28):11105CrossRefGoogle Scholar
  7. Häder DP (1987) Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis. Arch Microbiol 147(2):179CrossRefGoogle Scholar
  8. Häder DP, Liu SM (1990) Motility and gravitactic orientation of the flagellate, Euglena gracilis, impaired by artificial and solar UV-B radiation. Curr Microbiol 21(3):161CrossRefGoogle Scholar
  9. Hayakawa T, Sakuma S, Fukuhara T, Yokoyama Y, Arai F (2014) A single cell extraction chip using vibration-induced whirling flow and a thermo-responsive gel pattern. Micromachines 5(3):681CrossRefGoogle Scholar
  10. Hayakawa T, Sakuma S, Arai F (2015) On-chip 3D rotation of oocyte based on a vibration-induced local whirling flow. Microsyst Nanoeng 1:1CrossRefGoogle Scholar
  11. Hayakawa T, Akita Y, Arai F (2017) Parallel trapping of single motile cells using vibration-induced flow on microfluidic chip. In: The 30th IEEE international conference on micro electro mechanical systems (MEMS 2017) (Las Vegas, USA, 2017), pp 1281–1284Google Scholar
  12. Holtsmark J, Johnsen I, Sikkeland T, Skavlem S (1954) Boundary layer flow near a cylindrical obstacle in an oscillating, incompressible fluid. J Acoust Soc Am 26(1):26MathSciNetCrossRefGoogle Scholar
  13. Jekely G (2009) Evolution of phototaxis. Philos Trans R Soc Lond B Biol Sci 364(1531):2795CrossRefGoogle Scholar
  14. Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30(2):225CrossRefzbMATHGoogle Scholar
  15. Lieu VH, House TA, Schwartz DT (2012) Hydrodynamic tweezers: impact of design geometry on flow and microparticle trapping. Anal Chem 84(4):1963CrossRefGoogle Scholar
  16. Lutz BR, Chen J, Schwartz DT (2006) Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal Chem 78(15):5429CrossRefGoogle Scholar
  17. Macnab RM, Koshland D (1972) The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci 69(9):2509CrossRefGoogle Scholar
  18. Mishra A, Maltais T, Walter T, Wei A, Williams S, Wereley S (2016) Trapping and viability of swimming bacteria in an optoelectric trap. Lab Chip 16(6):1039CrossRefGoogle Scholar
  19. Nakahara K, Sakuma S, Hayakawa T, Arai F (2015) On-chip transportation and measurement of mechanical characteristics of oocytes in an open environment. Micromachines 6(5):648CrossRefGoogle Scholar
  20. Park SJ, Bae H, Kim J, Lim B, Park J, Park S (2010) Motility enhancement of bacteria actuated microstructures using selective bacteria adhesion. Lab Chip 10(13):1706CrossRefGoogle Scholar
  21. Probst C, Grünberger A, Wiechert W, Kohlheyer D (2013) Polydimethylsiloxane (PDMS) sub-micron traps for single-cell analysis of bacteria. Micromachines 4(4):357CrossRefGoogle Scholar
  22. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635CrossRefGoogle Scholar
  23. Rasmussen MB, Oddershede LB, Siegumfeldt H (2008) Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria. Appl Environ Microbiol 74(8):2441CrossRefGoogle Scholar
  24. Saito M, Morita S (2006) Ultrasonic manipulation of locomotive microorganisms and evaluation of their activity. J Appl Phys 100(11):114701CrossRefGoogle Scholar
  25. Saito M, Kitamura N, Terauchi M (2002) Ultrasonic manipulation of locomotive microorganisms and evaluation of their activity. J Appl Phys 92(12):7581CrossRefGoogle Scholar
  26. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20CrossRefGoogle Scholar
  27. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671CrossRefGoogle Scholar
  28. Shi J, Ahmed D, Mao X, Lin SCS, Lawit A, Huang TJ (2009) Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9(20):2890CrossRefGoogle Scholar
  29. Steager EB, Sakar MS, Kim DH, Kumar V, Pappas GJ, Kim MJ (2011) Electrokinetic and optical control of bacterial microrobots. J Micromech Microeng 21(3):035001CrossRefGoogle Scholar
  30. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796CrossRefGoogle Scholar
  31. Xin H, Xu R, Li B (2012) Optical trapping, driving, and arrangement of particles using a tapered fibre probe. Sci Rep 2:818CrossRefGoogle Scholar
  32. Xin H, Xu R, Li B (2013a) Optical formation and manipulation of particle and cell patterns using a tapered optical fiber. Laser Photonics Rev 7(5):801MathSciNetCrossRefGoogle Scholar
  33. Xin H, Li Y, Liu X, Li B (2013b) Escherichia coli-based biophotonic waveguides. Nano Lett 13(7):3408CrossRefGoogle Scholar
  34. Xin H, Liu Q, Li B (2014) Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation. Sci Rep 4:1Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Micro-Nano Systems EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations