Augustsson P, Magnusson C, Nordin M et al (2012) Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal Chem 84:7954–7962. https://doi.org/10.1021/ac301723s
Article
Google Scholar
Becker FF, Wang XB, Huang Y et al (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci 92:860–864
Article
Google Scholar
Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2009) Inertial microfluidics for continuous particle filtration and extraction. Microfluid Nanofluidics 7:217–226. https://doi.org/10.1007/s10404-008-0377-2
Article
Google Scholar
Blankenstein G, Larsen UD (1998) Modular concept of a laboratory on a chip for chemical and biochemical analysis. Biosens Bioelectron 13:427–438. https://doi.org/10.1016/S0956-5663(97)00109-7
Article
Google Scholar
Chung J, Shao H, Reiner T et al (2012) Microfluidic cell sorter (??FCS) for on-chip capture and analysis of single cells. Adv Healthc Mater 1:432–436. https://doi.org/10.1002/adhm.201200046
Article
Google Scholar
Cohen SJ, Punt CJA, Iannotti N et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. https://doi.org/10.1200/JCO.2007.15.8923
Google Scholar
Cristofanilli M (2006) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. Semin Oncol 33(Supple):9–14. https://doi.org/10.1053/j.seminoncol.2006.03.016
Article
Google Scholar
de Albuquerque A, Kubisch I, Stölzel U et al (2012) Prognostic and predictive value of circulating tumor cell analysis in colorectal cancer patients. J Transl Med 10:222. https://doi.org/10.1186/1479-5876-10-222
Article
Google Scholar
Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046. https://doi.org/10.1039/b912547g
Article
Google Scholar
Eijkel JCT, van den Berg A (2006) The promise of nanotechnology for separation devices: from a top-down approach to nature-inspired separation devices. Electrophoresis 27:677–685. https://doi.org/10.1002/elps.200500727
Article
Google Scholar
Fan X, Jia C, Yang J et al (2015) A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens Bioelectron 71:380–386. https://doi.org/10.1016/j.bios.2015.04.080
Article
Google Scholar
Gossett DR, Di Carlo D (2009) Particle focusing mechanisms in curving confined flows. Anal Chem 81:8459–8465. https://doi.org/10.1021/ac901306y
Article
Google Scholar
Hou J-M, Krebs M, Ward T et al (2010) Circulating tumor cells, enumeration and beyond. Cancers (Basel) 2:1236–1250. https://doi.org/10.3390/cancers2021236
Article
Google Scholar
Inglis DW, Davis JA, Austin RH, Sturm JC (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655. https://doi.org/10.1039/b515371a
Article
Google Scholar
Joosse SA, Pantel K (2013) Biologic challenges in the detection of circulating tumor cells. Cancer Res 73:8–11. https://doi.org/10.1158/0008-5472.CAN-12-3422
Article
Google Scholar
Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY (2008) Recent advances in microparticle continuous separation. IET Nanobiotechnol 2:1–13. https://doi.org/10.1049/iet-nbt:20070025
Article
Google Scholar
Kim HC, Park J, Cho Y et al (2009) Lateral-flow particle filtration and separation with multilayer microfluidic channels. J Vac Sci Technol B Microelectron Nanom Struct 27:3115. https://doi.org/10.1116/1.3258155
Article
Google Scholar
Kim S, Han SI, Park MJ et al (2013) Circulating tumor cell microseparator based on lateral magnetophoresis and immunomagnetic nanobeads. Anal Chem 85:2779–2786. https://doi.org/10.1021/ac303284u
Article
Google Scholar
Lin HK, Zheng S, Williams AJ et al (2010) Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res 16:5011–5018. https://doi.org/10.1158/1078-0432.CCR-10-1105
Article
Google Scholar
Liu Z, Huang F, Du J et al (2013) Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure. Biomicrofluidics. https://doi.org/10.1063/1.4774308
Google Scholar
Loutherback K, Chou KS, Newman J et al (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluidics 9:1143–1149. https://doi.org/10.1007/s10404-010-0635-y
Article
Google Scholar
Mach AJ, Kim JH, Arshi A et al (2011) Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip 11:2827–2834. https://doi.org/10.1039/C1LC20330D
Article
Google Scholar
Mohamed H, Murray M, Turner JN, Caggana M (2009) Isolation of tumor cells using size and deformation. J Chromatogr A 1216:8289–8295. https://doi.org/10.1016/j.chroma.2009.05.036
Article
Google Scholar
Myung JH, Hong S (2015) Microfluidic devices to enrich and isolate circulating tumor cells. Lab Chip. https://doi.org/10.1039/C5LC00947B
Google Scholar
Onstenk W, Gratama JW, Foekens JA, Sleijfer S (2013) Towards a personalized breast cancer treatment approach guided by circulating tumor cell (CTC) characteristics. Cancer Treat Rev 39:691–700. https://doi.org/10.1016/j.ctrv.2013.04.001
Article
Google Scholar
Paludo J, Abbade AL, Fanelli MF (2016) Early detection of poor outcome in patients with metastatic colorectal cancer : tumor kinetics evaluated by circulating tumor cells. OncoTargets Ther. https://doi.org/10.2147/ott.s115268
Google Scholar
Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659. https://doi.org/10.1039/b712784g
Article
Google Scholar
Pantel K, Alix-Panabières C (2010) Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 16:398–406. https://doi.org/10.1016/j.molmed.2010.07.001
Article
Google Scholar
Park J-S, Song S-H, Jung H-I (2009) Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab Chip 9:939–948. https://doi.org/10.1039/b813952k
Article
Google Scholar
Ren C, Chen H, Han C et al (2013) Detection and molecular analysis of circulating tumor cells for early diagnosis of pancreatic cancer. Med Hypotheses 80:833–836
Article
Google Scholar
Schiro PG, Zhao M, Kuo JS et al (2012) Angewandte communications sensitive and high-throughput isolation of rare cells from peripheral blood with ensemble-decision aliquot ranking. Angewandte. https://doi.org/10.1002/anie.201108695
Google Scholar
Sim TS, Kwon K, Park JC et al (2011) Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels. Lab Chip 11:93–99. https://doi.org/10.1039/c0lc00109k
Article
Google Scholar
Sun J, Li M, Liu C et al (2012) Double spiral microchannel for label-free tumor cell separation and enrichment. Lab Chip 12:3952. https://doi.org/10.1039/c2lc40679a
Article
Google Scholar
Tanaka F, Yoneda K, Hasegawa S (2010) Circulating tumor cells (CTCs) in lung cancer : current status and future perspectives. Lung Cancer Targets Ther 1:77–84
Article
Google Scholar
Tol J, Koopman M, Miller MC et al (2010) Circulating tumour cells early predict progression-free and overall survival in advanced colorectal cancer patients treated with chemotherapy and targeted agents. Ann Oncol 21:1006
Article
Google Scholar
Yu M, Stott S, Toner M et al (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382. https://doi.org/10.1083/jcb.201010021
Article
Google Scholar
Zheng S, Lin H, Liu JQ et al (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 1162:154–161. https://doi.org/10.1016/j.chroma.2007.05.064
Article
Google Scholar
Zhou M-D, Hao S, Williams AJ et al (2014) Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells. Sci Rep 4:7392. https://doi.org/10.1038/srep07392
Article
Google Scholar