Skip to main content
Log in

Optofluidic sensor system with Ge PIN photodetector for CMOS-compatible sensing

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Vertical optofluidic biosensors based on refractive index sensing promise highest sensitivities at smallest area footprint. Nevertheless, when it comes to large-scale fabrication and application of such sensors, cheap and robust platforms for sample preparation and supply are needed—not to mention the expected ease of use in application. We present an optofluidic sensor system using a cyclic olefin copolymer microfluidic chip as carrier and feeding supply for a complementary metal–oxide–semiconductor compatibly fabricated Ge PIN photodetector. Whereas typically only passive components of a sensor are located within the microfluidic channel, here the active device is directly exposed to the fluid, enabling top-illumination. The capability for detecting different refractive indices was verified by different fluids with subsequent recording of the optical responsivity. All components excel in their capability to be transferred to large-scale fabrication and further integration of microfluidic and sensing systems. The photodetector itself is intended to serve as a platform for further sophisticated collinear sensing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Augel L, Fischer IA, Dunbar LA, Bechler S, Berrier A, Etezadi D, Hornung F, Kostecki K, Ozdemir CI, Soler M, Altug H, Schulze J (2016) Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors. In: Proceedings SPIE 9724, plasmonics in biology and medicine XIII, 97240M. doi:10.1117/12.2212650

  • Beals M, Michel J, Liu JF, Ahn DH, Sparacin D, Sun R, Hong CY, Kimerling LC, Pomerene A, Carothers D, Beattie J, Kopa A, Apsel A, Rasras MS, Gill DM, Patel SS, Tu KY, Chen YK, White AE (2008) Process flow innovations for photonic device integration in CMOS. In: Proceedings SPIE 6898, silicon photonics III, 689804. doi:10.1117/12.774576

  • Blanco FJ, Agirregabiria M, Berganzo J, Mayora K, Elizalde J, Calle A, Dominguez C, Lechuga LM (2006) Microfluidic-optical integrated CMOS compatible devices for label-free biochemical sensing. J Micromech Microeng 16:1006–1016. doi:10.1088/0960-1317/16/5/018

    Article  Google Scholar 

  • Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815. doi:10.1021/la0493621

    Article  Google Scholar 

  • Canalejas-Tejero V, Herranz S, Bellingham A, Moreno-Bondi MC, Barrios CA (2014) Passivated aluminum nanohole arrays for label-free biosensing applications. ACS Appl Mater Interfaces 6:1005–1010. doi:10.1021/am404509f

    Article  Google Scholar 

  • Cetin AE, Coskun AF, Galarreta BC, Huang M, Herman D, Ozcan A, Altug H (2014) Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci Appl 3:e122. doi:10.1038/lsa.2014.3

    Article  Google Scholar 

  • Chen S, Svedendahl M, Van Duyne RP, Käll M (2011) Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett 11:1826–1830. doi:10.1021/nl2006092

    Article  Google Scholar 

  • Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60:91–100. doi:10.1042/EBC20150010

    Article  Google Scholar 

  • De Vos K, Bartolozzi I, Schacht E, Bienstman P, Baets R (2007) Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt Express 15:7610. doi:10.1364/OE.15.007610

    Article  Google Scholar 

  • Erickson D, Mandal S, Yang AHJ, Cordovez B (2008) Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid Nanofluid 4:33–52. doi:10.1007/s10404-007-0198-8

    Article  Google Scholar 

  • Escobedo C, Brolo AG, Gordon R, Sinton D (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82:10015–10020. doi:10.1021/ac101654f

    Article  Google Scholar 

  • Fischer IA, Augel L, Kropp T, Jitpakdeebodin S, Franz N, Oliveira F, Rolseth E, Maß T, Taubner T, Schulze J (2016) Ge-on-Si PIN-photodetectors with Al nanoantennas: the effect of nanoantenna size on light scattering into waveguide modes. Appl Phys Lett 108:071108. doi:10.1063/1.4942393

    Article  Google Scholar 

  • Guyot L, Blanchard-Dionne A-P, Patskovsky S, Meunier M (2011) Integrated silicon-based nanoplasmonic sensor. Opt Express 19:9962. doi:10.1364/OE.19.009962

    Article  Google Scholar 

  • Kasper E, Lyutovich K, Bauer M, Oehme M (1998) New virtual substrate concept for vertical MOS transistors. Thin Solid Films 336:319–322. doi:10.1016/S0040-6090(98)01317-0

    Article  Google Scholar 

  • Laplatine L, Al’Mrayat O, Luan E, Fang C, Rezaiezadeh S, Ratner DM, Cheung K, Dattner Y, Chrostowski L (2017) System-level integration of active silicon photonic biosensors. In: Proceedings SPIE 10061, microfluidics, bioMEMS, and medical microsystems XV, 100610I. doi:10.1117/12.2256068

  • Mazzotta F, Wang G, Hägglund C, Höök F, Jonsson MP (2010) Nanoplasmonic biosensing with on-chip electrical detection. Biosens Bioelectron 26:1131–1136. doi:10.1016/j.bios.2010.07.008

    Article  Google Scholar 

  • Patskovsky S, Meunier M (2013) Integrated Si-based nanoplasmonic sensor with phase-sensitive angular interrogation. Ann Phys 525:431–436. doi:10.1002/andp.201300078

    Article  Google Scholar 

  • Perino M, Pasqualotto E, De Toni A, Garoli D, Scaramuzza M, Zilio P, Ongarello T, Paccagnella A, Romanato F (2014) Development of a complete plasmonic grating-based sensor and its application for self-assembled monolayer detection. Appl Opt 53:5969. doi:10.1364/AO.53.005969

    Article  Google Scholar 

  • TOPAS Advanced Polymers (2017) Displays | TOPAS. http://www.topas.com/markets/optical/displays. Accessed 21 June 2017

  • Zang K, Zhang D, Huo Y, Chen X, Lu C-Y, Fei ET, Kamins TI, Feng X, Huang Y, Harris JS (2015) Microring bio-chemical sensor with integrated low dark current Ge photodetector. Appl Phys Lett 106:101111. doi:10.1063/1.4915094

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported through funding by the University of Stuttgart and the Ministry of Science and Education of Baden-Wuerttemberg (RiSC). Furthermore, we appreciate the support by the Institute of Electron Devices and Circuits at Ulm University especially from S. Jenisch and S. Strehle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Augel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augel, L., Berkmann, F., Latta, D. et al. Optofluidic sensor system with Ge PIN photodetector for CMOS-compatible sensing. Microfluid Nanofluid 21, 169 (2017). https://doi.org/10.1007/s10404-017-2007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-2007-3

Keywords

Navigation