Skip to main content
Log in

Droplet group production in an AC electro-flow-focusing microdevice

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We report the production of droplet groups with a controlled number of drops in a microfluidic electro-flow-focusing device under the action of an AC electric field. This regime appears for moderate voltages (500–700 V peak-to-peak) and signal frequencies between 25 and 100 Hz, much smaller than the droplet production rate (\({\sim }\,{500}\) Hz). For this experimental condition the production frequency of a droplet package is twice the signal frequency. Since the continuous phase flow in the microchannel is a Hagen–Poiseuille flow, the smaller droplets of a group move faster than the bigger ones leading to droplet clustering downstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ahn K, Agresti J, Chong H, Marquez M, Weitz D (2006) Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 88(26):264,105

    Article  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  • Belloul M, Bartolo JF, Ziraoui B, Coldren F, Taly V, El Abed A (2013) High-throughput formation and control of monodisperse liquid crystals droplets driven by an alternating current electric field in a microfluidic device. Appl Phys Lett 103(3):033,112

    Article  Google Scholar 

  • Bruus H (2007) Theoretical microfluidics. Oxford University Press, Oxford

    Google Scholar 

  • Budden M, Schneider S, Groß G, Kielpinski M, Henkel T, Köhler J (2013) Splitting and switching of microfluid segments in closed channels for chemical operations in the segment-on-demand technology. Chem Eng J 227:166–173

    Article  Google Scholar 

  • Burns JR, Ramshaw C (2001) The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip 1:10–15

    Article  Google Scholar 

  • Castro-Hernández E, García-Sánchez P, Tan SH, Gañán-Calvo AM, Baret JC, Ramos A (2015) Breakup length of ac electrified jets in a microfluidic flow-focusing junction. Microfluid Nanofluidics 19(4):787–794

    Article  Google Scholar 

  • Castro-Hernández E, García-Sánchez P, Alzaga-Gimeno J, Tan SH, Baret JC, Ramos A (2016) Ac electrified jets in a flow-focusing device: jet length scaling. Biomicrofluidics 10(4):043,504

    Article  Google Scholar 

  • Chokkalingam V, Ma Y, Thiele J, Schalk W, Tel J, Huck WTS (2014) An electro-coalescence chip for effective emulsion breaking in droplet microfluidics. Lab Chip 14:2398–2402

    Article  Google Scholar 

  • Churski K, Kaminski TS, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel DB, Garstecki P (2012) Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip 12:1629–1637

    Article  Google Scholar 

  • Frenz L, El Harrak A, Pauly M, Bégin-Colin S, Griffiths AD, Baret JC (2008) Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angew Chem Int Ed 47(36):6817–6820

    Article  Google Scholar 

  • Gañán-Calvo AM (1998) Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys Rev Lett 80(2):285

    Article  Google Scholar 

  • Gañán-Calvo AM, López-Herrera JM, Riesco-Chueca P (2006) The combination of electrospray and flow focusing. J Fluid Mech 566:421–445

    Article  MATH  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic t-junction-scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  Google Scholar 

  • Gu H, Malloggi F, Vanapalli SA, Mugele F (2008) Electrowetting-enhanced microfluidic device for drop generation. Appl Phys Lett 93(18):183,507

    Article  Google Scholar 

  • He P, Kim H, Luo D, Marquez M, Cheng Z (2010) Low-frequency ac electro-flow-focusing microfluidic emulsification. Appl Phys Lett 96(17):174,103

    Article  Google Scholar 

  • Ma J, Lee SY, Yi C, Li CW (2017) Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications-a review. Lab Chip 17(2):209–226

    Article  Google Scholar 

  • Ray A, Varma V, Jayaneel P, Sudharsan N, Wang Z, Ramanujan R (2017) On demand manipulation of ferrofluid droplets by magnetic fields. Sens Actuators B Chem 242:760–768

    Article  Google Scholar 

  • Shen B, Ricouvier J, Malloggi F, Tabeling P (2016) Designing colloidal molecules with microfluidics. Adv Sci 3(6):1600012

    Article  Google Scholar 

  • Siegel AC, Shevkoplyas SS, Weibel DB, Bruzewicz DA, Martinez AW, Whitesides GM (2006) Cofabrication of electromagnets and microfluidic systems in poly(dimethylsiloxane). Angew Chem 118:7031–7036

    Article  Google Scholar 

  • Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45(44):7336–7356

    Article  Google Scholar 

  • Tan SH, Semin B, Baret JC (2014) Microfluidic flow-focusing in ac electric fields. Lab Chip 14(6):1099–1106

    Article  Google Scholar 

  • Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone H, Garstecki P, Weibel D, Gitlin I, Whitesides G (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed 44(5):724–728

    Article  Google Scholar 

  • Zhu P, Wang L (2017) Passive and active droplet generation with microfluidics: a review. Lab Chip 17(1):34–75

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from Spanish Government Ministry MEC under Contracts DPI2013-46485-C3-1-R and FIS2014-54539-P and Regional Government Junta de Andalucía under Contract P11-FQM-7919. They would also like to acknowledge the technical assistance of S. Schlautman in the fabrication of the microfluidic devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Castro-Hernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Hernández, E., García-Sánchez, P., Velencoso-Gómez, A. et al. Droplet group production in an AC electro-flow-focusing microdevice. Microfluid Nanofluid 21, 158 (2017). https://doi.org/10.1007/s10404-017-1995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1995-3

Keywords

Navigation