Skip to main content
Log in

Magnetic field sensing using magnetic-fluid-filled optofluidic ring resonator

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A magnetic field sensor based on the silica optofluidic ring resonator is proposed and experimentally demonstrated for the first time. Magnetic fluid is filled in the core of the microcapillary to experience the strength change of the applied magnetic field. When the whispering gallery modes circulate in the wall of the microcapillary, it can experience the increasing refractive index of magnetic fluid with the increase in the magnetic field strength, leading to the redshift of the resonant wavelength. The maximum sensitivity of 75.7 pm/mT and figure of merit of 105 T−1 are realized, respectively, corresponding to a large dynamic magnetic field range from 15 to 125 mT. By optimizing the concentration of the kerosene-based magnetic fluid, the detection limit of 2.2 mT and the measurement resolution of 0.9 mT are achieved, respectively. This work provides a novel magnetic field sensing scheme with high performance using the optofluidic ring resonator and further broadens its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chao C, Guo LJ (2006) Design and optimization of microring resonators in biochemical sensing applications. J Lightwave Technol 24:1395–1402

    Article  Google Scholar 

  • Chen L, Huang X, Zhu J, Li G, Lan S (2011) Fiber magnetic-field sensor based on nanoparticle magnetic fluid and Fresnel reflection. Opt Lett 36:2761–2763

    Article  Google Scholar 

  • Chen Y, Han Q, Liu T, Lan X, Xiao H (2013) Optical fiber magnetic field sensor based on single-mode–multimode–single-mode structure and magnetic fluid. Opt Lett 38:1539–1541

    Article  Google Scholar 

  • Costa GKB, Gouvêa PMP, Soares LMB, Pereira JMB, Favero F, Braga AMB, Muhoray PP, Bruno AC, Carvalho ICS (2016) In-fiber Fabry–Perot interferometer for strain and magnetic field sensing. Opt Express 24:14690–14696

    Article  Google Scholar 

  • Gao R, Jiang Y, Abdelaziz S (2013) All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers. Opt Lett 38:1539–1541

    Article  Google Scholar 

  • Gao R, Lu D, Cheng J, Jiang Y, Jiang L, Ye J, Qi Z (2016) Magnetic fluid—infiltrated anti-resonant reflecting optical waveguide for magnetic field sensing based on leaky modes. J Lightwave Technol 34:3490–3495

    Article  Google Scholar 

  • Gong Y, Zhang M, Gong C, Wu Y, Rao Y, Fan X (2015) Sensitive optofluidic flow rate sensor based on laser heating and microring resonator. Microfluid Nanofluid 19:1497–1505

    Article  Google Scholar 

  • Henze R, Seifert T, Ward J, Benson O (2011) Tuning whispering gallery modes using internal aerostatic pressure. Opt Lett 36:4536–4538

    Article  Google Scholar 

  • Layeghi A, Latifi H, Frazão O (2014) Magnetic field sensor based on nonadiabatic tapered optical fiber with magnetic fluid. IEEE Photonics Technol Lett 26:1904–1907

    Article  Google Scholar 

  • Lenz J, Edelstein AS (2006) Magnetic sensors and their applications. IEEE Sens J 6:631–649

    Article  Google Scholar 

  • Levy U, Shamai R (2008) Tunable optofluidic devices. Microfluid Nanofluid 4:97–105

    Article  Google Scholar 

  • Li X, Ding H (2012) All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid. Opt Lett 37:5187–5189

    Article  Google Scholar 

  • Li Z, Psaltis D (2008) Optofluidic dye lasers. Microfluid Nanofluid 4:145–158

    Article  Google Scholar 

  • Li M, Wu X, Liu L, Xu L (2013) Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators. Opt Express 21:16908–16913

    Article  Google Scholar 

  • Li B, Clements WR, Yu X, Shi K, Gong Q, Xiao Y (2014) Single nanoparticle detection using split-mode microcavity Raman lasers. Proc Natl Acad Sci 111:14657–14662

    Article  Google Scholar 

  • Lin W, Zhang H, Liu B, Song B, Li Y, Yang C, Liu Y (2015) Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluid. Sci Rep 5:17791

    Article  Google Scholar 

  • Liu Y, Shi L, Xu X, Zhao P, Wang Z, Pu S, Zhang X (2014) All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator. Lab Chip 14:3004–3010

    Article  Google Scholar 

  • Lucchetta DE, Vita F, Francescangeli D, Francescangeli O, Simoni F (2016) Optical measurement of flow rate in a microfluidic channel. Microfluid Nanofluid 20:1–9

    Article  Google Scholar 

  • Lv R, Zhao Y, Wang D, Wang Q (2014) Magnetic fluid-filled optical fiber Fabry-Pérot sensor for magnetic field measurement. IEEE Photonics Technol Lett 26:217–219

    Article  Google Scholar 

  • Miao Y, Wu J, Lin W, Zhang K, Yuan Y, Song B, Zhang H, Liu B, Yao J (2013) Magnetic field tunability of optical microfiber taper integrated with ferrofluid. Opt Express 21:29914–29920

    Article  Google Scholar 

  • Monat C, Domachuk P, Grillet C, Collins M, Eggleton BJ, Cronin-Golomb M, Mutzenich S, Mahmud T, Rosengarten G, Mitchell A (2008) Optofluidics: a novel generation of reconfigurable and adaptive compact architectures. Microfluid Nanofluid 4:81–95

    Article  Google Scholar 

  • Nasir MNM, Murugan GS, Zervas MN (2016) Spectral cleaning and output modal transformations in whispering-gallery-mode microresonators. JOSA B 33:1963–1970

    Article  Google Scholar 

  • Nguyen NQ, Gupta N (2009) Analysis of an encapsulated whispering gallery mode micro-optical sensor. Appl Phys B 96:793–801

    Article  Google Scholar 

  • O’Shea DC, Pöllinger M, Vogler A, Rauschenbeutel A (2011) All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators. Appl Phys B 105:129–148

    Article  Google Scholar 

  • Pu S, Chen X, Di Z, Xia Y (2007) Relaxation property of the magnetic-fluid-based fiber-optic evanescent field modulator. J Appl Phys 101:053532

    Article  Google Scholar 

  • Riesen N, Zhang WQ, Monro TM (2016) Dispersion in silica microbubble resonators. Opt Lett 41:1257–1260

    Article  Google Scholar 

  • Shopova SI, Sun Y, Rosenberger AT, Fan X (2009) Highly sensitive tuning of coupled optical ring resonators by microfluidics. Microfluid Nanofluid 6:425–429

    Article  Google Scholar 

  • Thakur HV, Nalawade SM, Gupta S, Kitture R, Kale SN (2011) Photonic crystal fiber injected with Fe3O4 nano-fluid for magnetic field detection. Appl Phys Lett 99:161101

    Article  Google Scholar 

  • White IM, Oveys H, Fan X (2006) Liquid-core optical ring-resonator sensors. Opt Lett 31:1319–1321

    Article  Google Scholar 

  • Yan S, Chen Y, Li C, Xu F, Lu Y (2015) Differential twin receiving fiber-optic magnetic field and electric current sensor utilizing a microfiber coupler. Opt Express 23:9407–9414

    Article  Google Scholar 

  • Yang M, Dai J, Zhou C, Jiang D (2009) Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials. Opt Express 17:20777–20782

    Article  Google Scholar 

  • Yang Y, Ward J, Chormaic SN (2014) Quasi-droplet microbubbles for high resolution sensing applications. Opt Express 22:6881–6898

    Article  Google Scholar 

  • Yuan W, Yin C, Xiao P, Wangm X, Sun J, Huang S, Chen X, Cao Z (2011) Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure. Microfluid Nanofluid 11:781–785

    Article  Google Scholar 

  • Zamora V, Díez A, Andrés MV, Gimeno B (2007) Refractometric sensor based on whispering-gallery modes of thin capillaries. Opt Express 15:12011–12016

    Article  Google Scholar 

  • Zhao P, Shi L, Liu Y, Wang Z, Pu S, Zhang X (2014a) Iron-oxide nanoparticles embedded silica microsphere resonator exhibiting broadband all-optical wavelength tunability. Opt Lett 39:3845–3848

    Article  Google Scholar 

  • Zhao Y, Wu D, Lv R, Ying Y (2014b) Tunable characteristics and mechanism analysis of the magnetic fluid refractive index with applied magnetic field. IEEE Trans Magn 50:1–5

    Google Scholar 

  • Zhi Y, Yu X, Gong Q, Yang L, Xiao YF (2017) Single nanoparticle detection using optical microcavities. Adv Mater. doi:10.1002/adma.201604920

    Google Scholar 

  • Zhu J, Ozdemir SK, Xiao Y, Li L, He L, Chen D, Yang L (2010) On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat Photonics 4:46–49

    Article  Google Scholar 

  • Zhu S, Liu Y, Shi L, Xu X, Zhang X (2016a) Extinction ratio and resonant wavelength tuning using three dimensions of silica microresonators. Photon Res 4:191–196

    Article  Google Scholar 

  • Zhu S, Liu Y, Shi L, Xu X, Yuan S, Liu N, Zhang X (2016b) Tunable polarization beam splitter based on optofluidic ring resonator. Opt Express 24:17511–17521

    Article  Google Scholar 

  • Zou Y, Liu K, Shen Z, Chen X (2011) Magnetic-fluid core optical fiber. Microfluid Nanofluid 10:447–451

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China (Grant No. 2016YFB0402503), the National Natural Science Foundation of China (Grants No. 11774110 and No. 61307075), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120142120067), the Fundamental Research Funds for the Central Universities (HUST: 2014TS019), and the Director Fund of Wuhan National Laboratory for Optoelectronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Shi, L., Liu, N. et al. Magnetic field sensing using magnetic-fluid-filled optofluidic ring resonator. Microfluid Nanofluid 21, 156 (2017). https://doi.org/10.1007/s10404-017-1994-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1994-4

Keywords

Navigation