Toward the commercialization of optofluidics

  • Chaolong SongEmail author
  • Nam-Trung Nguyen
  • Say Hwa Tan


Optofluidics is a marriage between the field of optics and microfluidics. This field aims at providing practical solutions with the integration of optical tools into lab-on-chip systems. Often, this results in opportunities for commercialization due to the advancement offered after the integration. Although numerous novel functions and properties have been demonstrated with the combination of optics and microfluidics, the market has witnessed only few transferals of optofluidic technologies from academic laboratories. This stemmed from a lack of a “killer applications” despite several decades of development. Therefore, it is necessary to have a retrospective review on this topic, particularly on the basic optofluidic components, to analyze what might be the hurdles to stop the market uptake of optofluidic devices. Specifically, this review paper is focused on discussion of optofluidic components in terms of fabrication standardization, device and operational cost and practicability for end users. It is believed that these factors play important roles in the market uptake of a novel technology. We then provide perspectives on how to align the development of optofluidics with the requirements imposed by the industry.


Optofluidics Microfluidics Lab-on-chip Commercialization 



This work was supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUG170608).


  1. Ahn S-H, Kim Y-K (1999) Proposal of human eye’s crystalline lens-like variable focusing lens. Sens Actuators A 78:48–53CrossRefGoogle Scholar
  2. Austin R, Puchella J (2009) Nanofluidics: nanoscience and nanotechnology. Royal Society of Chemistry, CambridgeGoogle Scholar
  3. Bassous E, Taub HH, Kuhn L (1977) Ink jet printing nozzle arrays etched in silicon. Appl Phys Lett 31:135–137CrossRefGoogle Scholar
  4. Becker H (2009a) Chips, money, industry, education and the “killer application”. Lab Chip 9:1659–1660CrossRefGoogle Scholar
  5. Becker H (2009b) Hype, hope and hubris: the quest for the killer application in microfluidics. Lab Chip 9:2119–2122CrossRefGoogle Scholar
  6. Becker H (2009c) IP or no IP: that is the question. Lab Chip 9:3327–3329CrossRefGoogle Scholar
  7. Becker H (2009d) It’s the economy. Lab Chip 9:2759–2762CrossRefGoogle Scholar
  8. Becker H (2010a) Lost in translation. Lab Chip 10:813–815CrossRefGoogle Scholar
  9. Becker H (2010b) One size fits all? Lab Chip 10:1894–1897CrossRefGoogle Scholar
  10. Becker H (2010c) Start me up. Lab Chip 10:3197–3200CrossRefGoogle Scholar
  11. Beebe DJ, Moore JS, Yu Q, Liu RH, Kraft ML, Jo B-H, Devadoss C (2000) Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. Proc Natl Acad Sci 97:13488–13493CrossRefGoogle Scholar
  12. Bernini R, Campopiano S, Zeni L (2002) Silicon micromachined hollow optical waveguides for sensing applications. IEEE J Sel Top Quantum Electron 8:106–110CrossRefGoogle Scholar
  13. Blow N (2009) Microfluidics: the great divide. Nat Methods 6:683–686CrossRefGoogle Scholar
  14. Cai DK, Neyer A, Kuckuk R, Heise HM (2008) Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication. Opt Mater 30:1157–1161CrossRefGoogle Scholar
  15. Camou S, Fujita H, Fujii T (2003) PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45CrossRefGoogle Scholar
  16. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118–2134CrossRefGoogle Scholar
  17. Chong ZZ, Tor SB, Loh NH, Wong TN, Ganan-Calvo AM, Tan SH, Nguyen N-T (2015) Acoustofluidic control of bubble size in microfluidic flow-focusing configuration. Lab Chip 15:996–999CrossRefGoogle Scholar
  18. Chronis N, Liu GL, Jeong K-H, Lee LP (2003) Tunable liquid-filled microlens array integrated with microfluidic network. Opt Express 11:2370–2378CrossRefGoogle Scholar
  19. Datta A, In-Yong E, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin H, Dasgupta PK (2003) Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3:788–795CrossRefGoogle Scholar
  20. Dong L, Jiang H (2007) Tunable and movable liquid microlens in situ fabricated within microfluidic channels. Appl Phys Lett 91:041109CrossRefGoogle Scholar
  21. Dong L, Agarwal AK, Beebe DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442:551–554CrossRefGoogle Scholar
  22. Duduś A, Blue R, Uttamchandani D (2015) Single-mode fiber variable optical attenuator based on a ferrofluid shutter. Appl Opt 54:1952–1957CrossRefGoogle Scholar
  23. Eaker CB, Dickey MD (2016) Liquid metal actuation by electrical control of interfacial tension. Appl Phys Rev 3:031103CrossRefGoogle Scholar
  24. Ertman S, Lesiak P, Wolinski TR (2017) Optofluidic photonic crystal fiber-based sensors. J Lightw Technol 35:3399–3405CrossRefGoogle Scholar
  25. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26CrossRefGoogle Scholar
  26. Gissibl T, Thiele S, Herkommer A, Giessen H (2016) Two-photon direct laser writing of ultracompact multi-lens objectives. Nat Photon 10:554–560CrossRefGoogle Scholar
  27. Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics—a review. J Micromech Microeng 3:168CrossRefGoogle Scholar
  28. Groisman A, Zamek S, Campbell K, Pang L, Levy U, Fainman Y (2008) Optofluidic 1 × 4 switch. Opt Express 16:13499–13508CrossRefGoogle Scholar
  29. Hashimoto M, Mayers B, Garstecki P, Whitesides GM (2006) Flowing lattices of bubbles as tunable, self-assembled diffraction gratings. Small 2:1292–1298CrossRefGoogle Scholar
  30. Hongbin Y, Guangya Z, Siong CF, Feiwen L (2008) Optofluidic variable aperture. Opt Lett 33:548–550CrossRefGoogle Scholar
  31. Huang N-T, Zhang H-L, Chung M-T, Seo JH, Kurabayashi K (2014) Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. Lab Chip 14:1230–1245CrossRefGoogle Scholar
  32. Jackie C, Weisong W, Ji F, Kody V (2004) Variable-focusing microlens with microfluidic chip. J Micromech Microeng 14:675CrossRefGoogle Scholar
  33. Jeong K-H, Liu GL, Chronis N, Lee LP (2004) Tunable microdoublet lens array. Opt Express 12:2494–2500CrossRefGoogle Scholar
  34. Kim E, Baaske MD, Vollmer F (2017) Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors. Lab Chip 17:1190–1205CrossRefGoogle Scholar
  35. Krogmann F, Mönch W, Zappe H (2006) A MEMS-based variable micro-lens system. J Opt A: Pure Appl Opt 8:S330CrossRefGoogle Scholar
  36. Krupenkin T, Yang S, Mach P (2003) Tunable liquid microlens. Appl Phys Lett 82:316–318CrossRefGoogle Scholar
  37. Kuiper S, Hendriks BHW (2004) Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85:1128–1130CrossRefGoogle Scholar
  38. Lee SW, Lee SS (2007) Focal tunable liquid lens integrated with an electromagnetic actuator. Appl Phys Lett 90:121129CrossRefGoogle Scholar
  39. Lien V, Berdichevsky Y, Lo Y-H (2003) Microspherical surfaces with predefined focal lengths fabricated using microfluidic capillaries. Appl Phys Lett 83:5563–5565CrossRefGoogle Scholar
  40. Llobera A, Wilke R, Buttgenbach S (2004) Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift. Lab Chip 4:24–27CrossRefGoogle Scholar
  41. Llobera A, Wilke R, Buttgenbach S (2005) Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing. Lab Chip 5:506–511CrossRefGoogle Scholar
  42. Ma Z, Teo A, Tan S, Ai Y, Nguyen N-T (2016) Self-aligned interdigitated transducers for acoustofluidics. Micromachines 7:216CrossRefGoogle Scholar
  43. Madou MJ (2011) Foundamentals of microfabrication and nanotechnology. CRC Press, Boca RatonGoogle Scholar
  44. Mak JSW, Rutledge SA, Abu-Ghazalah RM, Eftekhari F, Irizar J, Tam NCM, Zheng G, Helmy AS (2013) Recent developments in optofluidic-assisted Raman spectroscopy. Prog Quantum Electron 37:1–50CrossRefGoogle Scholar
  45. Mao X, Waldeisen JR, Juluri BK, Huang TJ (2007) Hydrodynamically tunable optofluidic cylindrical microlens. Lab Chip 7:1303–1308CrossRefGoogle Scholar
  46. Mao X, Stratton ZI, Nawaz AA, Lin S-CS, Huang TJ (2010) Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure. Biomicrofluidics 4:043007CrossRefGoogle Scholar
  47. Mishra K, Murade C, Carreel B, Roghair I, Oh JM, Manukyan G, Van Den Ende D, Mugele F (2014) Optofluidic lens with tunable focal length and asphericity. Sci Rep 4:6378CrossRefGoogle Scholar
  48. Mishra K, Van Den Ende D, Mugele F (2016) Recent developments in optofluidic lens technology. Micromachines 7:102CrossRefGoogle Scholar
  49. Mohammed MI, Haswell S, Gibson I (2015) Lab-on-a-chip or chip-in-a-lab: challenges of commercialization lost in translation. Proc Technol 20:54–59CrossRefGoogle Scholar
  50. Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photon 1:106–114CrossRefGoogle Scholar
  51. Muller P, Spengler N, Zappe H, Monch W (2010) An optofluidic concept for a tunable micro-iris. J Microelectromech Syst 19:1477–1484CrossRefGoogle Scholar
  52. Murshed SMS, Tan SH, Nguyen NT, Wong TN, Yobas L (2009) Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction. Microfluid Nanofluid 6:253–259CrossRefGoogle Scholar
  53. Nguyen N-T (2010) Micro-optofluidic lenses: a review. Biomicrofluidics 4:031501CrossRefGoogle Scholar
  54. Palchesko RN, Zhang L, Sun Y, Feinberg AW (2012) Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS ONE 7:e51499CrossRefGoogle Scholar
  55. Park J, Kang D-E, Paulson B, Nazari T, Oh K (2014) Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications. Opt Express 22:17320–17330CrossRefGoogle Scholar
  56. Passaro D, Foroni M, Poli F, Cucinotta A, Selleri S, Laegsgaard J, Bjarklev AO (2008) All-silica hollow-core microstructured bragg fibers for biosensor application. IEEE Sens J 8:1280–1286CrossRefGoogle Scholar
  57. Petersen KE, Petersen KE (1979) Fabrication of an integrated, planar silicon ink-jet structure. IEEE Trans Electron Dev 26:1918–1920CrossRefGoogle Scholar
  58. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386CrossRefGoogle Scholar
  59. Quake SR, Scherer A (2000) From micro- to nanofabrication with soft materials. Science 290:1536–1540CrossRefGoogle Scholar
  60. Rae PJ, Dattelbaum DM (2004) The properties of poly(tetrafluoroethylene) (PTFE) in compression. Polymer 45:7615–7625CrossRefGoogle Scholar
  61. Rosenauer M, Vellekoop MJ (2009) 3D fluidic lens shaping—a multiconvex hydrodynamically adjustable optofluidic microlens. Lab Chip 9:1040–1042CrossRefGoogle Scholar
  62. Rosenauer M, Vellekoop MJ (2010) Characterization of a microflow cytometer with an integrated three-dimensional optofluidic lens system. Biomicrofluidics 4:043005CrossRefGoogle Scholar
  63. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189CrossRefGoogle Scholar
  64. Sarkar A, Shivakiran Bhaktha BN, Khastgir SP (2016) Optofluidic two-dimensional grating volume refractive index sensor. Appl Opt 55:7247–7251CrossRefGoogle Scholar
  65. Say-Hwa T, Murshed SMS, Nam-Trung N, Teck Neng W, Levent Y (2008) Thermally controlled droplet formation in flow focusing geometry: formation regimes and effect of nanoparticle suspension. J Phys D Appl Phys 41:165501CrossRefGoogle Scholar
  66. Schelle B, Dreß P, Franke H, Klein KF, Slupek J (1999) Physical characterization of lightguide capillary cells. J Phys D Appl Phys 32:3157CrossRefGoogle Scholar
  67. Schmidt H, Hawkins AR (2008) Optofluidic waveguides: I. Concepts and implementations. Microfluid Nanofluid 4:3–16CrossRefGoogle Scholar
  68. Schuhladen S, Banerjee K, Stuermer M, Mueller P, Wallrabe U, Zappe H (2016) Variable optofluidic slit aperture. Light Sci Appl 5:e16005CrossRefGoogle Scholar
  69. Shi J, Stratton Z, Lin S-CS, Huang H, Huang TJ (2010) Tunable optofluidic microlens through active pressure control of an air–liquid interface. Microfluid Nanofluid 9:313–318CrossRefGoogle Scholar
  70. Shi Y, Zhu XQ, Liang L, Yang Y (2016) Tunable focusing properties using optofluidic Fresnel zone plates. Lab Chip 16:4554–4559CrossRefGoogle Scholar
  71. Song C, Nguyen N-T, Asundi AK, Low CL-N (2009a) Biconcave micro-optofluidic lens with low-refractive-index liquids. Opt Lett 34:3622–3624CrossRefGoogle Scholar
  72. Song C, Nguyen N-T, Tan S-H, Asundi AK (2009b) A micro optofluidic lens with short focal length. J Micromech Microeng 19:085012CrossRefGoogle Scholar
  73. Song C, Nguyen N-T, Tan S-H, Asundi AK (2009c) Modelling and optimization of micro optofluidic lenses. Lab Chip 9:1178–1184CrossRefGoogle Scholar
  74. Song C, Nguyen N-T, Asundi AK, Tan S-H (2010a) Tunable micro-optofluidic prism based on liquid-core liquid-cladding configuration. Opt Lett 35:327–329CrossRefGoogle Scholar
  75. Song C, Nguyen N-T, Tan S-H, Asundi AK (2010b) A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length. Microfluid Nanofluid 9:889–896CrossRefGoogle Scholar
  76. Song C, Luong T-D, Kong TF, Nguyen N-T, Asundi AK (2011a) Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens. Opt Lett 36:657–659CrossRefGoogle Scholar
  77. Song C, Nguyen N-T, Asundi AK, Low CL-N (2011b) Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure. Opt Lett 36:1767–1769CrossRefGoogle Scholar
  78. Song C, Xi L, Jiang H (2013a) Acoustic lens with variable focal length for photoacoustic microscopy. J Appl Phys 114:194703CrossRefGoogle Scholar
  79. Song C, Xi L, Jiang H (2013b) Liquid acoustic lens for photoacoustic tomography. Opt Lett 38:2930–2933CrossRefGoogle Scholar
  80. Tang SKY, Mayers BT, Vezenov DV, Whitesides GM (2006) Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels. Appl Phys Lett 88:061112CrossRefGoogle Scholar
  81. Tang SKY, Stan CA, Whitesides GM (2008) Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. Lab Chip 8:395–401CrossRefGoogle Scholar
  82. Testa G, Persichetti G, Bernini R (2015) Optofluidic approaches for enhanced microsensor performances. Sensors 15:465CrossRefGoogle Scholar
  83. Testa G, Persichetti G, Bernini R (2016) Liquid core ARROW waveguides: a promising photonic structure for integrated optofluidic microsensors. Micromachines 7:47CrossRefGoogle Scholar
  84. Tian F, Sukhishvili S, Du H (2015) Photonic crystal fiber as a lab-in-fiber optofluidic platform. In: Cusano A, Consales M, Crescitelli A, Ricciardi A (eds) Lab-on-fiber technology. Springer, ChamGoogle Scholar
  85. Tsai CG, Yeh JA (2010) Circular dielectric liquid iris. Opt Lett 35:2484–2486CrossRefGoogle Scholar
  86. Volpatti LR, Yetisen AK (2014) Commercialization of microfluidic devices. Trends Biotechnol 32:347–350CrossRefGoogle Scholar
  87. Werber A, Zappe H (2005) Tunable microfluidic microlenses. Appl Opt 44:3238–3245CrossRefGoogle Scholar
  88. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  89. Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc Natl Acad Sci USA 101:12434–12438CrossRefGoogle Scholar
  90. Wu Z, Nguyen NT (2005) Hydrodynamic focusing in microchannels under consideration of diffusive dispersion: theories and experiments. Sens Actuators B: Chem 107:965–974CrossRefGoogle Scholar
  91. Wu C, Tse M-LV, Liu Z, Zhang AP, Guan B-O, Tam H-Y (2014) In-line photonic crystal fiber optofluidic refractometer. In: Proceedings SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 91578H (June 2, 2014). doi: 10.1117/12.2059598
  92. Xi H-D, Guo W, Leniart M, Chong ZZ, Tan SH (2016) AC electric field induced droplet deformation in a microfluidic T-junction. Lab Chip 16:2982–2986CrossRefGoogle Scholar
  93. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRefGoogle Scholar
  94. Xiong S, Liu AQ, Chin LK, Yang Y (2011) An optofluidic prism tuned by two laminar flows. Lab Chip 11:1864–1869CrossRefGoogle Scholar
  95. Yang T, Bragheri F, Minzioni P (2016) A comprehensive review of optical stretcher for cell mechanical characterization at single-cell level. Micromachines 7:90CrossRefGoogle Scholar
  96. Yin D, Deamer DW, Schmidt H, Barber JP, Hawkins AR (2004) Integrated optical waveguides with liquid cores. Appl Phys Lett 85:3477–3479CrossRefGoogle Scholar
  97. Yit-Fatt Y, Say-Hwa T, Nam-Trung N, Murshed SMS, Teck-Neng W, Levent Y (2009) Thermally mediated control of liquid microdroplets at a bifurcation. J Phys D Appl Phys 42:065503CrossRefGoogle Scholar
  98. Yu JQ, Yang Y, Liu AQ, Chin LK, Zhang XM (2010) Microfluidic droplet grating for reconfigurable optical diffraction. Opt Lett 35:1890–1892CrossRefGoogle Scholar
  99. Zhang D-Y, Lien V, Berdichevsky Y, Choi J, Lo Y-H (2003) Fluidic adaptive lens with high focal length tunability. Appl Phys Lett 82:3171–3172CrossRefGoogle Scholar
  100. Zhang D-Y, Justis N, Lo Y-H (2004) Fluidic adaptive lens of transformable lens type. Appl Phys Lett 84:4194–4196CrossRefGoogle Scholar
  101. Zhang L, Wang Z, Wang Y, Qiu R, Fang W, Tong L (2015) In situ fabrication of a tunable microlens. Opt Lett 40:3850–3853CrossRefGoogle Scholar
  102. Zhang Y, Watts B, Guo T, Zhang Z, Xu C, Fang Q (2016) Optofluidic device based microflow cytometers for particle/cell detection: a review. Micromachines 7:70CrossRefGoogle Scholar
  103. Zidan HM, Abu-Elnader M (2005) Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. Physica B 355:308–317CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Mechanical Engineering and Electronic InformationChina University of Geosciences (Wuhan)WuhanChina
  2. 2.Queensland Micro- and Nanotechnology CentreGriffith UniversityBrisbaneAustralia

Personalised recommendations