Skip to main content
Log in

Effects of embedded surfactants on the surface properties of PDMS; applicability for autonomous microfluidic systems

Microfluidics and Nanofluidics Aims and scope Submit manuscript

Cite this article

Abstract

Controlled surface modification of the PDMS (polydimethylsiloxane) was developed and studied in this work to develop autonomous capillary-driven microfluidic system to be applied in bioanalytical devices. The characteristics of the PDMS surfaces were modified by embedding adequate surfactant molecules in the polymer matrix to be moved onto the free surface by diffusion. The change of the surface characteristics was studied considering the expected performance in autonomous biomicrofluidic applications and the influence on non-specific human blood protein binding also. The method was evaluated from technological aspects also, as the integrability of the microfluidic system, considering the previously published results critically. Compositions were defined to be adequate for fabrication autonomous capillary system with enhanced transport efficiency and moderated non-specific protein adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Bodas D, Khan-Malek C (2007) Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—an SEM investigation. Sens Actuators B 123(1):368–373

    Article  Google Scholar 

  • Brukker (2016) Accessed June 2016. http://www.brukker.com

  • Cai D, Neyer A, Kuckuk R, Heise HM (2010) Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. J Mol Struct 976:274–281

    Article  Google Scholar 

  • Carl Zeiss Microscopy (2016) Accessed June 2016. http://www.zeiss.com

  • Cordeiro AL, Nitschke M, Janke A, Helbig R, D’Souza F, Donnelly GT, Willemsen PR, Werner C (2009) Fluorination of poly(dimethylsiloxane) surfaces by low pressure CF4 plasma physicochemical and antifouling properties, eXPRESS. Polym Lett 3(2):70–83

    Article  Google Scholar 

  • Diamant H, Andelman D (1996) Kinetics of surfactant adsorption at fluid–fluid interfaces. J Phys Chem 100:13732–13742

    Article  Google Scholar 

  • Dou YH, Bao N, Xu JJ, Meng F, Chen HY (2004) Separation of proteins on surface-modified poly(dimethylsiloxane) microfluidic devices. Electrophoresis 25(17):3024–3031

    Article  Google Scholar 

  • Dow Corning (2016) Accessed June 2016. http://www.dowcorning.com

  • Eastoe J, Dalton JS (2000) Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Adv Colloid Interface Sci 85:103–144

    Article  Google Scholar 

  • Ebara M, Hoffman JM, Stayton PS, Hoffman AS (2007) Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and ‘smart’ polymers. Radiat Phys Chem 76(8–9):1409–1413

    Article  Google Scholar 

  • Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254(2):306–315

    Article  Google Scholar 

  • Fainerman VB, Makievski AV, Miller R (1994) The analysis of dynamic surface tension of sodium alkyl sulphate solutions, based on asymptotic equations of adsorption kinetic theory. Colloid Surf A 87:61–75

    Article  Google Scholar 

  • Hansen RS (1960) The theory of diffusion controlled absorption kinetics with accompanying evaporation. J Phys Chem 64:637–641

    Article  Google Scholar 

  • Hansen RS (1961) Diffusion and the kinetics of adsorption of aliphatic acids and alcohols at the water-air interface. J Colloid Sci 16:549–560

    Article  Google Scholar 

  • Hu SW, Ren XQ, Bachman M, Sims CE, Li GP, Allbritton NL (2004) Surface-directed, graft polymerization within microfluidic channels. Anal Chem 76(7):1865–1870

    Article  Google Scholar 

  • Huang HQ, Xu F, Dai ZP, Lin BC (2005) On-line isotachophoretic preconcentration and gel electrophoretic separation of sodium dodecyl sulfate-proteins on a microchip. Electrophoresis 26(11):2254–2260

    Article  Google Scholar 

  • ImageJ (2016) Accessed June 2016. https://imagej.nih.gov/ij/

  • Kang JZ, Yan JL, Liu JF, Qiu HB, Yin XB, Yang XR, Wang EK (2005) Dynamic coating for resolving rhodamine B adsorption to poly(dimethylsiloxane)/glass hybrid chip with laser-induced fluorescence detection. Talanta 66(4):1018–1024

    Article  Google Scholar 

  • Lai CC, Chung CK (2013) Numerical simulation of the capillary flow in the meander microchannel. Microsyst Technol 19:379–386

    Article  Google Scholar 

  • Leutron (2016) Accessed June 2016. http://www.leutron.com/cameras/smart-gige-cameras/

  • Madadi H, Casals-Terré J (2013) Long-term behavior of nonionic surfactant-added PDMS for self-driven microchips. Microsyst Technol 19(1):143–150

    Article  Google Scholar 

  • Makamba H, Hsieh YY, Sung WC, Chen SH (2005) Stable permanently hydrophilic protein-resistant thin-film coatings on poly(dimethylsiloxane) substrates by electrostatic self-assembly and chemical cross-linking. Anal Chem 77(13):3971–3978

    Article  Google Scholar 

  • Martin IT, Dressen B, Boggs M, Liu Y, Henry CS, Fisher ER (2007) Plasma modification of PDMS microfluidic devices for control of electroosmotic flow. Plasma Process Polym 4(4):414–424

    Article  Google Scholar 

  • Matsubara Y, Murakami Y, Kobayashi M, Morita Y, Tamiya E (2004) Application of on-chip cell cultures for teh detection of allergic response. Biosens Bioelectron 19(7):741–747

    Article  Google Scholar 

  • Niu ZQ, Gao F, Jia XY, Zhang WP, Chen WY, Qian KY (2006) Synthesis studies of sputtering TiO2 films on poly(dimethylsiloxane) for surface modification. Colloid Surf A Physicochem Eng Asp 272(3):170–175

    Article  Google Scholar 

  • Oyarzua E, Walther JH, Mejia A, Zambrano HA (2015) Early regimes of water capillary flow in slit silica nanochannels. Phys Chem Chem Phys 17:14731–14739

    Article  Google Scholar 

  • Papp K, Holczer E, Kecse-Nagy C, Szittner Z, Lóránd V, Rovero P, Prechl J, Fürjes P (2017) Multiplex determination of antigen specific antibodies with cell binding capability in a self-driven microfluidic system. Sens Actuators B Chem 238:1092–1097

    Article  Google Scholar 

  • Qiu W, Sun X, Wu C, Hjort K, Wu Z (2014) A contact angle study of the interaction between embedded amphiphilic molecules and the PDMS matrix in an aqueous environment. Micromachines 5(3):515–527

    Article  Google Scholar 

  • Roman GT, Culbertson CT (2006) Surface engineering of poly(dimethylsiloxane) microfluidic devices using transition metal sol-gel chemistry. Langmuir 22(9):4445–4451

    Article  Google Scholar 

  • Roman GT, Hlaus T, Bass KJ, Seelhammer TG, Culbertson CT (2005) Sol-gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophilic channel wall characteristics. Anal Chem 77(5):1414–1422

    Article  Google Scholar 

  • Roman GT, McDaniel K, Culbertson CT (2006) High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips. Analyst 131(2):194–201

    Article  Google Scholar 

  • Seguin CH, McLachlan JM, Norton PR, Lagugne-Labarthet F (2010) Surface modification of poly(dimethylsiloxane) for microfluidic assay applications. Appl Surf Sci 256(8):2524–2531

    Article  Google Scholar 

  • Seo J, Lee LP (2006) Effects on wettability by surfactant accumulation/depletion in bulk polydimethylsiloxane (PDMS). Sens Actuators, B 119(1):192–198

    Article  Google Scholar 

  • Sigma Aldrich (2016) Accessed June 2016. http://www.sigmaaldrich.com

  • Slentz BE, Penner NA, Lugowska E, Regnier F (2001) Nanoliter capillary electrochromatography columns based on collocated monolithic support structures molded in poly(dimethyl siloxane). Electrophoresis 22(17):3736–3743

    Article  Google Scholar 

  • Sui G, Wang J, Lee CC, Lu W, Lee SP, Leyton JV, Wu AM, Tseng H (2006) Solution phase surface modification in intact PDMS microfluidic channels. Anal Chem 78(15):5543–5551

    Article  Google Scholar 

  • ThermoFisher (2016) Accessed June. 2016. https://www.thermofisher.com/order/catalog/product/AMQAX1000

  • Thorslund S, Lindberg P, Andrén PE, Nikolajeff F, Bergquist J (2005) Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chip. Electrophoresis 26(24):4674–4683

    Article  Google Scholar 

  • Varian (2016) Accessed June 2016. http://www.varian.com

  • Vickers JA, Caulum MM, Henry CS (2006) Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis. Anal Chem 78(21):7446–7452

    Article  Google Scholar 

  • Wang B, Chen L, Abdulali-Kanji Z, Hugh Horton J, Oleschuk RD (2003) Aging effects on oxidized and amine-modified polydimethylsiloxane surfaces studied with chemical force microscopy: effects on electro-osmotic flow rate in microfluidic Channels. Langmuir 19(23):9792–9798

    Article  Google Scholar 

  • Wang AJ, Xu JJ, Zhang Q, Chen HY (2006) The use of poly(dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis. Talanta 69(1):210–215

    Article  Google Scholar 

  • Wang W, Zhao L, Zhou F, Zhu JJ, Zhang JR (2007) Electroosmotic flow-switchable poly(dimethylsiloxane) microfluidic channel modified with cysteine based on gold nanoparticles. Talanta 73(3):534–539

    Article  Google Scholar 

  • Wu DP, Zhao BX, Dai ZP, Qin JH, Lin BC (2006) Grafting epoxy-modified hydrophilic polymers onto poly(dimethylsiloxane) microfluidic chip to resist nonspecific protein adsorption. Lab Chip 6(7):942–947

    Article  Google Scholar 

  • Wu DP, Qin JH, Lin BC (2007) Self-assembled epoxy-modified polymer coating on a poly(dimethylsiloxane) microchip for EOF inhibition and biopolymers separation. Lab Chip 7(11):1490–1496

    Article  Google Scholar 

  • Xu YH, Li J, Wang EK (2008) Microchip micellar electrokinetic chromatography based on one functionalized ionic liquid and its excellent performance on proteins separation. J Chromatogr 1207(1–2):175–180

    Article  Google Scholar 

  • Yamamoto T, Hino M, Kakuhata R, Nojima T, Shinohara Y, Baba Y, Fujii T (2008) Evaluation of cell-free protein synthesis using PDMS-based microreactor arrays. Anal Sci 24(2):243–246

    Article  Google Scholar 

  • Yao M, Fang J (2012) Hydrophilic PEO-PDMS for microfluidic applications. J Micromech Microeng 22(2):025012

    Article  Google Scholar 

  • Yu K, Han Y (2006) A stable PEO-tethered PDMS surface having controllable wetting property by a swelling–deswelling process. Soft Matter 2(8):705–709

    Article  Google Scholar 

  • Zhang ZW, Feng XJ, Xu F, Liu X, Liu BF (2010) “Click” chemistry-based surface modification of poly(dimethylsiloxane) for protein separation in a microfluidic chip. Electrophoresis 31(18):3129–3136

    Article  Google Scholar 

  • Zimmermann M, Schmid H, Hunziker P, Delamarche E (2007) Capillary pumps for autonomous capillary systems. Lab Chip 7:119–125

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Research, Development and Innovation Fund (NKFIA) via the VKSZ_14-1-2015-0004 project and the MedInProt Protein Science Research Synergy Program of the Hungarian Academy of Sciences. The authors gratefully acknowledge the high-quality technical work of Magda Erős and Margit Payer regarding microfabrication processes. The authors also appreciate the important contribution of Judith Mihály, Vilmos Rakovics, Sándor Lenk, Nguyen Quoc Khanh and Krisztian Papp in implementation surface analytical methods (FTIR, UVVIS spectroscopy, AFM and cell viability studies), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eszter Holczer.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holczer, E., Fürjes, P. Effects of embedded surfactants on the surface properties of PDMS; applicability for autonomous microfluidic systems. Microfluid Nanofluid 21, 81 (2017). https://doi.org/10.1007/s10404-017-1916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1916-5

Keywords

Navigation